An Improved Model of Producing Saliency Map for Visual Attention System

  • Jingang Huang
  • Bin Kong
  • Erkang Cheng
  • Fei Zheng
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 15)

Abstract

The iLab Neuromorphic Vision Toolkit (iINVT), steadily kept up to date by the group around Laurent Itti, is one of the currently best known attention systems. Their model of bottom up or saliency-based visual attention as well as their implementation serves as a basis for many research groups. How to combine the feature maps finally into the saliency map is a key point for this kind of visual attention system. We modified the original model of Laurent Itti to make it more corresponding with our perception.

Keywords

Visual attention Feature integration Saliency map bottom up 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Koch, C., Ullman, S.: Shifts in Selective Visual Attention: towards the Underlying Neural Circuitry. Human Neurobiology 4(4), 219–227 (1985)Google Scholar
  2. 2.
    Itti, L., Koch, C., Niebur, E.: A Model of Saliencybased Visual Attention for Rrapid Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 20(11), 1254–1259 (1998)CrossRefGoogle Scholar
  3. 3.
    Milanese, R.: Detecting Salient Regions in an Image: From Biological Evidence to Computer Implementation. PhD thesis, University of Geneva, Switzerland (1993)Google Scholar
  4. 4.
    Itti, L., Koch, C.: Feature Combination Strategies for Saliency-based Visual Attention Systems. Journal of Electronic Imaging 10(1), 161–169 (2001)CrossRefGoogle Scholar
  5. 5.
    Palmer, S.E.: Vision Science, Photons to Phenomenology. MIT Press, Cambridge (1999)Google Scholar
  6. 6.
    Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall, Berkeley (2003)Google Scholar
  7. 7.
    Color Conversion Algorithm, Accessed (May 5, 2007), www.cs.rit.edu/~ncs/color/t_convert.html
  8. 8.
    Greenspan, H., Belongie, S., Goodman, R., Perona, P., Rakshit, S., Anderson, C.H.: Overcomplete Steerable Pyramid Filters and Rotation Invariance. In: Proc. IEEE Computer Vision and Pattern Recognition, Seattle, Wash, pp. 222–228 (June 1994)Google Scholar
  9. 9.
    Leventhal, A.G.: The Neural Basis of Visual Function: Vision and Visual Dysfunction, vol. 4. CRC Press, Boca Raton (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jingang Huang
    • 1
    • 2
    • 3
  • Bin Kong
    • 1
    • 3
  • Erkang Cheng
    • 1
    • 2
    • 3
  • Fei Zheng
    • 1
    • 3
  1. 1.Center for Biomimetic Sensing and Control Research, Institute of Intelligent MachinesChinese Academy of SciencesHefeiChina
  2. 2.Department of AutomationUniversity of Science and Technology of ChinaHefeiChina
  3. 3.The Key Laboratory of Biomimetic Sensing and Advanced Robot Technology 

Personalised recommendations