Foundations of Onto-Relational Learning

  • Francesca A. Lisi
  • Floriana Esposito
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5194)

Abstract

ILP is a major approach to Relational Learning that exploits previous results in concept learning and is characterized by the use of prior conceptual knowledge. An increasing amount of conceptual knowledge is being made available in the form of ontologies, mainly formalized with Description Logics (DLs). In this paper we consider the problem of learning rules from observations that combine relational data and ontologies, and identify the ingredients of an ILP solution to it. Our proposal relies on the expressive and deductive power of the KR framework \(\mathcal{DL}\)+log that allows for the tight integration of DLs and disjunctive Datalog with negation. More precisely we adopt an instantiation of this framework which integrates the DL \(\mathcal{SHIQ}\) and positive Datalog. We claim that this proposal lays the foundations of an extension of Relational Learning, called Onto-Relational Learning, to account for ontologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  2. 2.
    Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1–2), 353–367 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Buntine, W.: Generalized subsumption and its application to induction and redundancy. Artificial Intelligence 36(2), 149–176 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about datalog (and never dared to ask). IEEE Transactions on Knowledge and Data Engineering 1(1), 146–166 (1989)CrossRefGoogle Scholar
  5. 5.
    Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and Databases. Springer, Heidelberg (1990)Google Scholar
  6. 6.
    De Raedt, L., Džeroski, S.: First order jk-clausal theories are PAC-learnable. Artificial Intelligence 70, 375–392 (1994)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: \(\mathcal{AL}\)-log: Integrating Datalog and Description Logics. Journal of Intelligent Information Systems 10(3), 227–252 (1998)CrossRefGoogle Scholar
  8. 8.
    Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database Systems 22(3), 364–418 (1997)CrossRefGoogle Scholar
  9. 9.
    Frisch, A.M., Cohn, A.G.: Thoughts and afterthoughts on the 1988 workshop on principles of hybrid reasoning. AI Magazine 11(5), 84–87 (1991)Google Scholar
  10. 10.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9(3/4), 365–386 (1991)CrossRefGoogle Scholar
  11. 11.
    Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the description logic \(\mathcal{SHIQ}\). Journal of Artificial Intelligence Research 31, 151–198 (2008)MathSciNetGoogle Scholar
  12. 12.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Springer, Heidelberg (2004)Google Scholar
  13. 13.
    Gruber, T.: A translation approach to portable ontology specifications. Knowledge Acquisition 5, 199–220 (1993)CrossRefGoogle Scholar
  14. 14.
    Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From \(\mathcal{SHIQ}\) and RDF to OWL: The making of a web ontology language. Journal of Web Semantics 1(1), 7–26 (2003)Google Scholar
  15. 15.
    Horrocks, I., Sattler, U., Tobies, S.: Practical reasoning for very expressive description logics. Logic Journal of the IGPL 8(3), 239–263 (2000)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer, Heidelberg (2003)Google Scholar
  17. 17.
    Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104, 165–209 (1998)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Lisi, F.A.: Building Rules on Top of Ontologies for the Semantic Web with Inductive Logic Programming. Theory and Practice of Logic Programming 8(03), 271–300 (2008)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Lisi, F.A., Esposito, F.: Efficient Evaluation of Candidate Hypotheses in \(\mathcal{AL}\)-log. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI), vol. 3194, pp. 216–233. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Lisi, F.A., Malerba, D.: Bridging the Gap between Horn Clausal Logic and Description Logics in Inductive Learning. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, pp. 49–60. Springer, Heidelberg (2003)Google Scholar
  21. 21.
    Lisi, F.A., Malerba, D.: Ideal Refinement of Descriptions in \(\mathcal{AL}\)-log. In: Horváth, T., Yamamoto, A. (eds.) ILP 2003. LNCS (LNAI), vol. 2835, pp. 215–232. Springer, Heidelberg (2003)Google Scholar
  22. 22.
    Lisi, F.A., Malerba, D.: Inducing Multi-Level Association Rules from Multiple Relations. Machine Learning 55, 175–210 (2004)MATHCrossRefGoogle Scholar
  23. 23.
    Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with Rules. Journal on Web Semantics 3(1), 41–60 (2005)Google Scholar
  24. 24.
    Reiter, R.: Equality and domain closure in first order databases. Journal of ACM 27, 235–249 (1980)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Rosati, R.: Towards expressive KR systems integrating Datalog and description logics: preliminary report. In: Lambrix, P., Borgida, A., Lenzerini, M., Möller, R., Patel-Schneider, P.F. (eds.) Proceedings of the 1999 International Workshop on Description Logics (DL 1999). CEUR Workshop Proceedings (1999)Google Scholar
  26. 26.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Journal of Web Semantics 3(1) (2005)Google Scholar
  27. 27.
    Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Rosati, R.: \(\mathcal{DL}\)+log: Tight integration of description logics and disjunctive datalog. In: Doherty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. of Tenth International Conference on Principles of Knowledge Representation and Reasoning, pp. 68–78. AAAI Press, Menlo Park (2006)Google Scholar
  29. 29.
    Rouveirol, C., Ventos, V.: Towards Learning in CARIN-\(\mathcal{ALN}\). In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191–208. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  30. 30.
    Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with complements. Artificial Intelligence 48(1), 1–26 (1991)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Francesca A. Lisi
    • 1
  • Floriana Esposito
    • 1
  1. 1.Dipartimento di InformaticaUniversità degli Studi di BariBariItaly

Personalised recommendations