Probabilistic Discrete Mixtures Colour Texture Models

  • Michal Haindl
  • Vojtěch Havlíček
  • Jiří Grim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

A new generative multispectral texture model based on discrete distribution mixtures is introduced. Statistical texture properties are represented by a discrete distribution mixture of product components. A natural colour or multispectral texture is spectrally factorized and discrete mixtures models are learned and used to synthesize single orthogonal monospectral components. Texture synthesis is based on easy computation of arbitrary conditional distributions from the model. Finally single synthesized monospectral texture components are transformed into the required synthetic colour texture. This model can easily serve for texture segmentation, retrieval or to model single factors in complex Bidirectional Texture Function (BTF) space models. The advantages and weak points of the presented approach are demonstrated on several colour texture applications.

Keywords

Discrete distribution mixtures EM algorithm texture modeling 

References

  1. 1.
    Haindl, M., Filip, J.: Extreme compression and modeling of bidirectional texture function. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(10), 1859–1865 (2007)CrossRefGoogle Scholar
  2. 2.
    Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: Proc. Int. Conf. on Computer Vision (2), Corfu, Greece, pp. 1033–1038 (1999)Google Scholar
  3. 3.
    Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Fiume, E. (ed.) ACM SIGGRAPH 2001, pp. 341–346. ACM Press, New York (2001)Google Scholar
  4. 4.
    Heeger, D., Bergen, J.: Pyramid based texture analysis/synthesis. In: ACM SIGGRAPH 1995, pp. 229–238. ACM Press, New York (1995)Google Scholar
  5. 5.
    Dong, J., Chantler, M.: Capture and synthesis of 3d surface texture. In: Texture 2002, vol. 1, pp. 41–45. Heriot-Watt University (2002)Google Scholar
  6. 6.
    Zelinka, S., Garland, M.: Towards real-time texture synthesis with the jump map. In: 13th European Workshop on Rendering, pp. 99–104 (2002)Google Scholar
  7. 7.
    Bennett, J., Khotanzad, A.: Multispectral random field models for synthesis and analysis of color images. IEEE Trans. on Pattern Anal. and Machine Int. 20(3), 327–332 (1998)CrossRefGoogle Scholar
  8. 8.
    Bennett, J., Khotanzad, A.: Maximum likelihood estimation methods for multispectral random field image models. IEEE Transactions on Pattern Analysis and Machine Intelligence 21(6), 537–543 (1999)CrossRefGoogle Scholar
  9. 9.
    Gimelfarb, G.: Image Textures and Gibbs Random Fields. Kluwer Academic Pub., Dordrecht (1999)CrossRefGoogle Scholar
  10. 10.
    Haindl, M.: Texture synthesis. CWI Quarterly 4(4), 305–331 (1991)MATHGoogle Scholar
  11. 11.
    Haindl, M., Havlíček, V.: Multiresolution colour texture synthesis. In: Dobrovodský, K. (ed.) Proceedings of the 7th International Workshop on Robotics in Alpe-Adria-Danube Region, Bratislava, ASCO Art, pp. 297–302 (1998)Google Scholar
  12. 12.
    Haindl, M., Havlíček, V.: A multiresolution causal colour texture model. In: Amin, A., Pudil, P., Ferri, F.J., Iñesta, J.M. (eds.) SPR 2000 and SSPR 2000. LNCS, vol. 1876, pp. 114–122. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Paget, R., Longstaff, I.D.: Texture synthesis via a noncausal nonparametric multiscale markov random field. IEEE Trans. on Image Processing 7(8), 925–932 (1998)CrossRefGoogle Scholar
  14. 14.
    Zhu, S., Liu, X., Wu, Y.: Exploring texture ensembles by efficient markov chain monte carlo - toward a “trichromacy” theory of texture. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(6), 554–569 (2000)CrossRefGoogle Scholar
  15. 15.
    Haindl, M.: Texture modelling. In: Sanchez, B., Pineda, J.M., Wolfmann, J., Bellahse, Z., Ferri, F. (eds.) Proceedings of the World Multiconference on Systemics, Cybernetics and Informatics, Orlando, USA, vol. VII, pp. 634–639. International Institute of Informatics and Systemics (2000)Google Scholar
  16. 16.
    Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society, B B 39, 1–38 (1977)MathSciNetMATHGoogle Scholar
  17. 17.
    Schlesinger, M.: Relation between learning and self-learning in pattern recognition (in Russian). Kibernetika (2), 81–88 (1968)Google Scholar
  18. 18.
    Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Transactions on Graphics (TOG) 20(3), 127–150 (1968)CrossRefGoogle Scholar
  19. 19.
    Liu, F., Picard, R.: Periodicity, directionality, and randomness: Wold features for image modeling and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7), 722–733 (1996)CrossRefGoogle Scholar
  20. 20.
    Portilla, J., Simoncelli, E.: A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 40(1), 49–71 (2000)CrossRefMATHGoogle Scholar
  21. 21.
    Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.Y.: Synthesis of bidirectional texture functions on arbitrary surfaces. ACM Transactions on Graphics (TOG) 21(3), 665–672 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Michal Haindl
    • 1
  • Vojtěch Havlíček
    • 1
  • Jiří Grim
    • 1
  1. 1.Institute of Information Theory and Automation, of the ASCRPragueCzech Republic

Personalised recommendations