A Fast Search Algorithm for Vector Quantization Based on Associative Memories

  • Enrique Guzmán
  • Oleksiy Pogrebnyak
  • Luis Sánchez Fernández
  • Cornelio Yáñez-Márquez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

One of the most serious problems in vector quantization is the high computational complexity at the encoding phase. This paper presents a new fast search algorithm for vector quantization based on Extended Associative Memories (FSA-EAM). In order to obtain the FSA-EAM, first, we used the Extended Associative Memories (EAM) to create an EAM-codebook applying the EAM training stage to the codebook produced by the LBG algorithm. The result of this stage is an associative network whose goal is to establish a relation between training set and the codebook generated by the LBG algorithm. This associative network is EAM-codebook which is used by the FSA-EAM. The FSA-EAM VQ process is performed using the recalling stage of EAM. This process generates a set of the class indices to which each input vector belongs. With respect to the LBG algorithm, the main advantage offered by the proposed algorithm is high processing speed and low demand of resources (system memory), while the encoding quality remains competitive.

Keywords

vector quantization associative memories image coding fast search 

References

  1. 1.
    Gray, R.M.: Vector Quantization. IEEE ASSP Magazine 1, 4–9 (1984)CrossRefGoogle Scholar
  2. 2.
    Nasrabadi, N.M., King, R.A.: Image Coding Using Vector Quantization: A Review. IEEE Trans. on Communications 36(8), 957–971 (1988)CrossRefGoogle Scholar
  3. 3.
    Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer, Norwell (1992)CrossRefMATHGoogle Scholar
  4. 4.
    Linde, Y., Buzo, A., Gray, R.: An Algorithm for Vector Quantizer Design. IEEE Trans. on Communications 28(1), 84–95 (1980)CrossRefGoogle Scholar
  5. 5.
    Lloyd, L.P.: Least Squares Quantization in PCM. IEEE Trans. Inform. Theory IT-28, 129–137 (1982)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bahram, S., Azami, Z., Feng, G.: Robust Vector Quantizer Design Using Competitive Learning Neural Networks. In: Proc. of European Workshop on Emerging Techniques for Communications Terminals, pp. 72–75. IEEE Press, Toulouse (1997)Google Scholar
  7. 7.
    Kohonen, T.: Automatic Formation of Topological Maps of Patterns in a Self organizing System. In: Oja, E., Simula, O. (eds.) Proc. 2SCIA, Scand. Conf. on Image Analysis, pp. 214–220. Helsinki, Finland (1981)Google Scholar
  8. 8.
    Kohonen, T.: The Self-Organizing Map. IEEE Proc. 78(9), 1464–1480 (1990)CrossRefGoogle Scholar
  9. 9.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, Berlin (2001)CrossRefMATHGoogle Scholar
  10. 10.
    Nasrabadi, N., Feng, Y.: Vector Quantization of Images based upon the Kohonen Self-Organizing Feature Maps. In: IEEE International Conference on Neural Networks, vol. 1, pp. 101–108 (1988)Google Scholar
  11. 11.
    Amerijckx, C., Verleysen, M., Thissen, P., Legat, J.-D.: Image Compression by Self-Organized Kohonen Map. IEEE Trans. on Neural Networks 9, 503–507 (1998)CrossRefGoogle Scholar
  12. 12.
    Amerijckx, C., Legat, J.-D., Verleysen, M.: Image Compression Using Self-Organizing Maps. Systems Analysis Modelling Simulation 43(11), 1529–1543 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Guzmán, E., Pogrebnyak, O., Yañez, C.: Design of an Evolutionary Codebook Based on Morphological Associative Memories. In: Gelbukh, A., Kuri Morales, Á.F. (eds.) MICAI 2007. LNCS (LNAI), vol. 4827, pp. 601–611. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Sossa, H., Barrón, R., Vázquez, A.: Real-valued Patterns Classification based on Extended Associative Memory. In: Fifth Mexican International Conference on Computer Science, ENC 2004, pp. 213–219. IEEE Computer Society, México (2004)CrossRefGoogle Scholar
  15. 15.
    Barron, R.: Associative Memories and Morphological Neural Networks for Patterns Recall (in Spanish). PhD Thesis, Center for Computing Research (2005)Google Scholar
  16. 16.
    Steinbuch, K.: Die Lernmatrix. Kybernetik 1(1), 26–45 (1961)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Enrique Guzmán
    • 1
  • Oleksiy Pogrebnyak
    • 2
  • Luis Sánchez Fernández
    • 2
  • Cornelio Yáñez-Márquez
    • 2
  1. 1.Universidad Tecnológica de la MixtecaMexico
  2. 2.Centro de Investigación en Computación del Instituto Politécnico NacionalMexico

Personalised recommendations