Musical Style Identification with n-Grams and Neural Networks

  • Pedro P. Cruz-Alcázar
  • María J. Castro-Bleda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

Musical Style Identification (MSI) aims to automatically classify music by style. It is being recently explored, mostly in the field of multimedia databases, with potential applications to content-based retrieval. But MSI may be also employed in other applications. We try to face up this challenge with two different methodologies: n-gram Models and Neural Networks. Very good results were obtained with n-grams in our previous research and we were willing to test how other Artificial Intelligence techniques performed with this task, so we began a preliminary study with Multilayer Perceptrons that is promising.

Keywords

Computer music multimedia analysis musical style identification n-gram models neural networks 

References

  1. 1.
    Pollastri, E., Simoncelli, G.: Classification of melodies by composer with hidden markov models. In: First International Conference on WEB Delivering of Music, pp. 88–95. IEEE Computer Press, Washington (2001)Google Scholar
  2. 2.
    de León, P.P., Iñesta, J.: Musical style classification from symbolic data: A two-styles case study. In: Wiil, U.K. (ed.) CMMR 2003. LNCS, vol. 2771, pp. 166–177. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Soltau, H., et al.: Recognition of music types. In: Proc. ICASSP 1998, pp. 1137–1140. Seattle, Washington (1998)Google Scholar
  4. 4.
    de la Higuera, C., Piat, F., Tantini, F.: Learning stochastic finite automata for musical style recognition. In: Conf. on Implementation and Application of Automata, pp. 345–346 (2005)Google Scholar
  5. 5.
    Cruz, P.P., Vidal, E., Pérez, J.C.: Musical style identification using grammatical inference: The encoding problem. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP 2003. LNCS, vol. 2905, pp. 375–382. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cruz, P.P.: Técnicas de Reconocimiento de Formas Para el Modelado de Estilos Musicales. PhD thesis, Universidad Politécnica de Valencia (2004)Google Scholar
  7. 7.
    Cruz, P.P., Vidal, E.: Two grammatical inference applications in music processing. Applied Artificial Intelligence 22(1-2), 53–76 (2008)CrossRefGoogle Scholar
  8. 8.
    Jelinek, F.: Statistical Methods for Speech Recognition. MIT Press, Cambridge (1998)Google Scholar
  9. 9.
    Katz, S.M.: Estimation of probabilities from sparse data for language model component of a speech recognizer. IEEE Trans. on ASSP 35(3), 400–401 (1987)CrossRefGoogle Scholar
  10. 10.
    Clarkson, P., Rosenfeld, R.: Statistical language modeling using the CMU-cambridge toolkit. In: Proc. Eurospeech 1997, vol. 5, pp. 2707–2710 (1997)Google Scholar
  11. 11.
    Witten, I.T., Bell, T.C.: The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. IEEE Trans. on Information Theory 37(4), 1085–1094 (1991)CrossRefGoogle Scholar
  12. 12.
    Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) PDP: Computational models of cognition and perception, I, pp. 319–362. MIT Press, Cambridge (1986)Google Scholar
  13. 13.
    Bishop, C.M.: Neural networks for pattern recognition. Oxford Univ. Press, Oxford (1995)MATHGoogle Scholar
  14. 14.
    Zell, A., et al.: SNNS: Stuttgart Neural Network Simulator v. 4.2. Inst. Parallel and Distributed High Performance Systems, Univ. Stuttgart, Germany (1998)Google Scholar
  15. 15.
    Wiggins, G.A.: A framework for the evaluation of music representation systems. Computer Music Journal 17(3), 31–42 (1993)CrossRefGoogle Scholar
  16. 16.
    Cambouropoulos, E., Crawford, T., Iliopoulos, C.S.: Pattern processing in melodic sequences. Computers and the Humanities 35(1), 9–21 (2001)CrossRefGoogle Scholar
  17. 17.
    Selfridge-Field, E.: Representing musical information for retrieval. In: SIGIR: Exploratory Workshop on Music Information Retrieval. ACM, Berkeley (1998)Google Scholar
  18. 18.
    Expósito Martín, D.: Detección automática de estilos musicales con redes neuronales. Master thesis, Facultad Informática, Univ. Politécnica de Valencia (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Pedro P. Cruz-Alcázar
    • 1
  • María J. Castro-Bleda
    • 2
  1. 1.Departamento de Informática de Sistemas y ComputadoresUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain

Personalised recommendations