Weighted Cluster Ensemble Using a Kernel Consensus Function

  • Sandro Vega-Pons
  • Jyrko Correa-Morris
  • José Ruiz-Shulcloper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

Cluster ensemble is a good alternative to face the problem of data clustering. Some studies based on mathematical models have shown that cluster ensemble methods lead to an effective improvement of the results of the standard clustering algorithms. In this paper, we focus on this problem, proposing a new approach to solve it, by adding a new step into the usual cluster ensemble methodology. Representing partitions by graphs and a new kernel function to measure the similarity between partitions are other proposals for this work. Experiments with synthetic and real databases show the suitability and effectiveness of our method.

Keywords

cluster ensemble graph kernel consensus function 

References

  1. 1.
    Jain, A.K., Law, M.H.C.: Data Clustering: A User’s Dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing Surveys (CSUR) 31(3), 264–323 (1999)CrossRefGoogle Scholar
  3. 3.
    Fred, A., Jain, A.K.: Data Clustering Using Evidence Accumulation. In: Proc. of the 16th Intel Conference on Pattern Recognition, ICPR 2002, pp. 276–280. Quebec City (2002)Google Scholar
  4. 4.
    Strehl, A., Ghosh, J.: Cluster Ensembles – A Knowledge Reuse Framework for Combining Multiple Partitions. Journal of Machine Learning Research 3, 583–617 (2002)MathSciNetMATHGoogle Scholar
  5. 5.
    Topchy, A., Jain, A.K., Punch, W.: Clustering Ensembles: Models of Consensus and Weak Partitions. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(12), 1866–1881 (2005)CrossRefGoogle Scholar
  6. 6.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc., New York (2006)MATHGoogle Scholar
  7. 7.
    Topchy, A.P., Law, M.H.C., Jain, A.K., Fred, A.L.: Analysis of Consensus Partition in Cluster Ensemble. In: International Conference on Data Mining, pp. 225–232 (2006)Google Scholar
  8. 8.
    Kuncheva, L.I., Hadjitodorov, S.T., Todorova, L.P.: Experimental Comparison of Cluster Ensemble Methods. In: 9th International Conference on Information Fusion, pp. 1–7 (2006)Google Scholar
  9. 9.
    Gorder, A., Filkov, V.: Consensus Clustering: Comparison and Refinement. In: Proceedings of ALENEX, pp. 109–117 (2008)Google Scholar
  10. 10.
    Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized Kernels Between Labeled Graphs. In: Proc. of the Twentieth Int. Conf. on Machine Learning (2003)Google Scholar
  11. 11.
    Bakir, G.H., Zien, A., Tsuda, K.: Learning to Find Graph Pre-Images. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 253–261. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sandro Vega-Pons
    • 1
  • Jyrko Correa-Morris
    • 1
  • José Ruiz-Shulcloper
    • 1
  1. 1.Advanced Technologies Application CenterHavanaCuba

Personalised recommendations