Measuring Shape Circularity

  • Joviša Žunić
  • Kaoru Hirota
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5197)

Abstract

In this paper we define a new circularity measure. The new measure is easy to compute and, being area based, is robust with respect to noise. It ranges over (0,1] and gives the measured circularity equal to 1 if and only if the measured shape is a circle. The new measure is invariant with respect to translations, rotations and scaling.

Keywords

shape circularity measure moments 

References

  1. 1.
    Di Ruberto, C., Dempster, A.: Circularity measures based on mathematical Morphology. Electronics Letters 38, 1691–1693 (2000)CrossRefGoogle Scholar
  2. 2.
    Kim, C.E., Anderson, T.A.: Digital disks and a digital compactness measure. In: 16th Annual ACM symposium on Theory of STOC, pp. 117–124. ACM Press, New York (1984)Google Scholar
  3. 3.
    Lee, D.R., Sallee, T.: A method of measuring shape. Geographical Review 60, 555–563 (1970)CrossRefGoogle Scholar
  4. 4.
    Proffitt, D.: The measurement of circularity and ellipticity on a digital grid. Patt. Rec. 15, 383–387 (1982)CrossRefGoogle Scholar
  5. 5.
    Flusser, J., Suk, T.: Pattern recognition by affine moment invariants. Patt. Rec. 26, 167–174 (1993)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hu., M.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)MATHGoogle Scholar
  7. 7.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision. McGraw-Hill, New York (1995)Google Scholar
  8. 8.
    Jiang, X.Y., Bunke, H.: Simple and fast computation of moments. Patt. Rec. 24, 801–806 (1991)CrossRefGoogle Scholar
  9. 9.
    Rahtu, E., Salo, M., Heikkila, J.: A new convexity measure based on a probabilistic interpretation of images. IEEE Trans. Patt. Anal. Mach. Intell. 28, 1501–1512 (2006)CrossRefGoogle Scholar
  10. 10.
    Rosin, P.L.: Measuring shape: ellipticity, rectangularity, and triangularity. Machine Vision and Applications 14, 172–184 (2003)CrossRefGoogle Scholar
  11. 11.
    Rosin, P.L.: Measuring sigmoidality. Patt. Rec. 37, 1735–1744 (2004)CrossRefGoogle Scholar
  12. 12.
    Stojmenović, M., Nayak, A.: Shape based circularity measures of planar point sets. In: IEEE International Conference on Signal Processing and Communications, pp. 1279–1282. IEEE Press, New York (2007)Google Scholar
  13. 13.
    Stojmenović, M., Žunić, J.: Measuring Elongation from Shape Boundary. Journal Mathematical Imaging and Vision 30, 73–85 (2008)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tsai, W.H., Chou, S.L.: Detection of generalized principal axes in rotationally symmetric shapes. Patt. Rec. 24, 95–104 (1991)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Xu, D., Li, H.: Geometric moment invariants. Patt. Rec. 41, 240–249 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Žunić, J., Rosin, P.L.: Rectilinearity Measurements for Polygons. IEEE Trans. on Patt. Anal. and Mach. Intell. 25, 1193–1200 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joviša Žunić
    • 1
  • Kaoru Hirota
    • 2
  1. 1.Computer ScienceExeter UniversityExeterU.K.
  2. 2.Department of Computational Intelligence and Systems Science, Graduate School of Science and Engineering, Tokyo Institute of TechnologyYokohamaJapan

Personalised recommendations