On the Connection between Kloosterman Sums and Elliptic Curves

  • Petr Lisoněk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5203)


We explore the known connection of Kloosterman sums on fields of characteristic 2 and 3 with the number of points on certain elliptic curves over these fields. We use this connection to prove results on the divisibility of Kloosterman sums, and to compute numerical examples of zeros of Kloosterman sums on binary and ternary fields of large orders. We also show that this connection easily yields some formulas due to Carlitz that were recently used to prove certain non-existence results on Kloosterman zeros in subfields.


Kloosterman sum elliptic curve finite field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosma, W., Cannon, J., Playoust, C.: The Magma Algebra System. I. The User Language. J. Symbolic Comput. 24, 235–265 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Carlitz, C.: Kloosterman Sums and Finite Field Extensions. Acta Arithmetica XVI, 179–193 (1969)Google Scholar
  3. 3.
    Charpin, P., Gong, G.: Hyperbent Functions, Kloosterman Sums and Dickson Polynomials. IEEE Trans. Inform. Theory (to appear)Google Scholar
  4. 4.
    Charpin, P., Helleseth, T., Zinoviev, V.: Propagation Characteristics of \(x\mapsto x\sp {-1}\) and Kloosterman Sums. Finite Fields Appl. 13, 366–381 (2007)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Enge, A.: Elliptic Curves and Their Applications to Cryptography: An Introduction. Kluwer Academic Publishers, Boston (1999)Google Scholar
  6. 6.
    Garaschuk, K., Lisoněk, P.: On Ternary Kloosterman Sums modulo 12. Finite Fields Appl. (to appear)Google Scholar
  7. 7.
    Helleseth, T., Zinoviev, V.: On Z 4-linear Goethals Codes and Kloosterman Sums. Des. Codes Cryptogr. 17, 269–288 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hirschfeld, J.W.P.: Projective Geometries over Finite Fields, 2nd edn. The Clarendon Press, Oxford University Press, New York (1998)zbMATHGoogle Scholar
  9. 9.
    Lachaud, G., Wolfmann, J.: The Weights of the Orthogonals of the Extended Quadratic Binary Goppa Codes. IEEE Trans. Inform. Theory 36, 686–692 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Leonard, P.A., Williams, K.S.: Quartics over GF(2n). Proc. Amer. Math. Soc. 36, 347–350 (1972)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Lercier, R., Lubicz, D., Vercauteren, F.: Point Counting on Elliptic and Hyperelliptic Curves. In: Cohen, H., Frey, G. (eds.) Handbook of Elliptic and Hyperelliptic Curve Cryptography. Chapman & Hall/CRC, Boca Raton (2006)Google Scholar
  12. 12.
    Menezes, A.: Elliptic Curve Public Key Cryptosystems. Kluwer Academic Publishers, Boston (1993)zbMATHGoogle Scholar
  13. 13.
    Moisio, M.: Kloosterman Sums, Elliptic Curves, and Irreducible Polynomials with Prescribed Trace and Norm. Acta Arithmetica (to appear)Google Scholar
  14. 14.
    Moisio, M., Ranto, K.: Kloosterman Sum Identities and Low-weight Codewords in a Cyclic Code with Two Zeros. Finite Fields Appl. 13, 922–935 (2007)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Petr Lisoněk
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations