Secure Implementation of the Stern Authentication and Signature Schemes for Low-Resource Devices

  • Pierre-Louis Cayrel
  • Philippe Gaborit
  • Emmanuel Prouff
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5189)

Abstract

In this paper we describe the first implementation on smartcard of the code-based authentication protocol proposed by Stern at Crypto’93 and we give a securization of the scheme against side channel attacks. On the whole, this provides a secure implementation of a very practical authentication (and possibly signature) scheme which is mostly attractive for light-weight cryptography.

References

  1. 1.
    Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odyzko, A. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  2. 2.
    Gaborit, P., Girault, M.: Lightweight code-based identification and signature. In: IEEE Transactions on Information Theory (ISIT), pp. 191–195 (2007)Google Scholar
  3. 3.
    Goubin, L., Patarin, J.: DES and Differential Power Analysis – The Duplication Method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Lemke, K., Schramm, K., Paar, C.: DPA on n-bit sized boolean and arithmetic operations and its applications to IDEA. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 205–219. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Luby, M., Rackoff, C.: Pseudo-random permutation generators and cryptographic composition. In: Symposium on Theory of Computing, vol. 18, pp. 353–363 (1986)Google Scholar
  6. 6.
    Luby, M., Rackoff, C.: How to construct pseudorandom permutation and pseudorandom functions. SIAM J. Comput. 17, 373–386 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks – Revealing the Secrets of Smartcards. Springer, Heidelberg (2007)MATHGoogle Scholar
  8. 8.
    McEvoy, R., Tunstall, M., Murphy, C., Marnane, W.P.: Differential power analysis of HMAC based on SHA-2, and countermeasures. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 317–332. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Oswald, E., Schramm, K.: An Efficient Masking Scheme for AES Software Implementations. In: Song, J., Kwon, T., Yung, M. (eds.) WISA 2005. LNCS, vol. 3786, pp. 292–305. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Patarin, J.: How to construct pseudorandom and super pseudorandom permutation from one single pseudorandom function. In: Rueppel, R. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 256–266. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  11. 11.
    Petit, C., Standaert, F.-X., Pereira, O., Malkin, T.G., Yung, M.: A Block Cipher based PRNG Secure Against Side-Channel Key Recovery, http://eprint.iacr.org/2007/356.pdf
  12. 12.
    Pieprzyk, J.: How to construct pseudorandom permutations from single pseudorandom functions advances. In: Damgård, I. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 140–150. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Preneel, B.: Hash functions - present state of art. ECRYPT Report (2005)Google Scholar
  14. 14.
    Prouff, E., Rivain, M.: A Generic Method for Secure SBox Implementation. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Pierre-Louis Cayrel
    • 1
  • Philippe Gaborit
    • 1
  • Emmanuel Prouff
    • 2
  1. 1.XLIM-DMIUniversité de LimogesLimoges CedexFrance
  2. 2.Oberthur TechnologiesNanterre CedexFrance

Personalised recommendations