Advertisement

Classification-Based Color Constancy

  • Simone Bianco
  • Gianluigi Ciocca
  • Claudio Cusano
  • Raimondo Schettini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5188)

Abstract

In this work, we investigate how illuminant estimation techniques can be improved using indoor/outdoor classification. The illuminant estimation algorithms considered are derived from the framework recently proposed by Van de Weijer and Gevers. We have designed a strategy for the selection of the most appropriate algorithm on the basis of the classification results. We have tested the proposed strategy on a subset of the widely used Funt and Ciurea dataset. Experimental results clearly demonstrate that our strategy outperforms general purpose algorithms.

Keywords

Video Clip Color Constancy Pattern Search Method Pattern Search Algorithm Decision Forest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hordely, S.D.: Scene illuminant estimation: Past, present, and future. Color Research & Application 31(4), 303–314 (2006)CrossRefGoogle Scholar
  2. 2.
    Gasparini, F., Schettini, R.: Color balancing of digital photos using simple image statistics. Pattern Recognition 37(6), 1201–1217 (2004)CrossRefGoogle Scholar
  3. 3.
    van de Weijer, J., Schmid, C., Verbeek, J.: Using High-Level Visual Information for Color Constancy. In: Proc. IEEE 14th International Conference on Computer Vision, pp. 1–8 (2007)Google Scholar
  4. 4.
    Gijsenij, A., Gevers, T.: Color Constancy using Natural Image Statistics. In: Proc. International Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  5. 5.
    Ciurea, F., Funt, B.: A Large Image Database for Color Constancy Research. In: Proc. IS&T/SID 11th Color Imaging Conference, pp. 160–164 (2003)Google Scholar
  6. 6.
    Funt, B., Barnard, K., Martin, L.: Is machine colour constancy good enough? In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 445–459. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    van de Weijer, J., Gevers, T., Gijsenij, A.: Edge-based Color Constancy. IEEE Transactions on Image Processing 16(9), 2207–2214 (2007)CrossRefGoogle Scholar
  8. 8.
    Buchsbaum, G.: A spacial processor model for object color perception. Journal of Franklin Institute 310, 1–26 (1980)CrossRefGoogle Scholar
  9. 9.
    Cardei, V., Funt, B., Barndard, K.: White point estimation for uncalibrated images. In: Proc. IS&T/SID 7th Color Imaging Conference, pp. 97–100 (1999)Google Scholar
  10. 10.
    Finlayson, G., Trezzi, E.: Shades of gray and colour constancy. In: Proc. IS&T/SID 12th Color Imaging Conference, pp. 37–41 (2004)Google Scholar
  11. 11.
    Barnard, K., Cardei, V., Funt, B.: A comparison of computational color constancy algorithms; part two: Experiments with image data. IEEE Tansactions on Image Processing 11(9), 985–996 (2002)CrossRefGoogle Scholar
  12. 12.
    Ciocca, G., Schettini, R.: An Innovative Algorithm for Key Frame Extraction in Video Summarization. Journal of Real-Time Image Processing 1(1), 69–88 (2006)CrossRefGoogle Scholar
  13. 13.
    Ciocca, G., Schettini, R.: Supervised And Unsupervised Classification Post-Processing for Visual Video Summaries. IEEE Transactions on Consumer Electronics 2(52), 630–638 (2006)CrossRefGoogle Scholar
  14. 14.
    Hordley, S.D., Finlayson, G.D.: Re-evaluating Color Constancy Algorithms. In: Proc. 17th International Conference on Pattern Recognition, pp. 76–79 (2004)Google Scholar
  15. 15.
    Lewis, R.M., Torczon, V.: Pattern search algorithms for bound constrained minimization. SIAM Journal on Optimization 9, 1082–1099 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lewis, R.M., Torczon, V.: Pattern search methods for linearly constrained minimization. SIAM Journal on Optimization 10, 917–941 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Szummer, M., Picard, R.: Indoor-outdoor image classification. In: Proc. Int. Workshop on Content-Based Access of Image and Video databases, pp. 42–51 (1998)Google Scholar
  18. 18.
    Vailaya, A., Figueiredo, M., Jain, A.K., Zhang, H.-J.: Image classification for content-based indexing. IEEE Transactions on Image Processing 10(1), 117–130 (2001)zbMATHCrossRefGoogle Scholar
  19. 19.
    Schettini, R., Brambilla, C., Cusano, C., Ciocca, G.: Automatic classification of digital photographs based on decision forests. International Journal of Pattern Recognition and Artificial Intelligence 18(5), 819–845 (2004)CrossRefGoogle Scholar
  20. 20.
    Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees, Wadsworth and Brooks/Cole (1984)Google Scholar
  22. 22.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics 1, 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Simone Bianco
    • 1
  • Gianluigi Ciocca
    • 1
  • Claudio Cusano
    • 1
  • Raimondo Schettini
    • 1
  1. 1.DISCo (Dipartimento di Informatica, Sistemistica e Comunicazione)Università degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations