3D Mesh Exploration for Smart Visual Interfaces

  • Georg Fuchs
  • Mathias Holst
  • René Rosenbaum
  • Heidrun Schumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5188)


Today’s fast growth of both the number and complexity of digital 3D models results in a number of research challenges. Amongst others, the efficient presentation of, and interaction with, such complex models is essential. It therefore has become more and more important to provide the user with a smart visual interface that presents all the information required in the context of the task at hand in a comprehensive way. In this paper, we present a two-stage concept for the task-oriented exploration of 3D polygonal meshes. An authoring tool uses a combination of automatic mesh segmentation and manual enrichment with semantic information for association with specified exploration goals. This information is then used at runtime to adapt the model’s presentation to the task at hand. The exploration of the enriched model can further be supported by interactive tools. 3D lenses are discussed as an example.


Augmented Reality Task Model Triangle Mesh Authoring Tool Mesh Vertex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mayer, J.: The New Main Research Areas of Fraunhofer IGD. Computer Graphics topics 19(2), 18–19 (2007)Google Scholar
  2. 2.
    Attene, M., Biasotti, S., Falcidieno, B., Mortara, M., Patanè, G., Spagnuolo, M.: Topological, geometric and structural approaches to enhance shape information. In: Proceedings of Eurographics Italian Chapter, Catania (I), pp. 7–13 (2006)Google Scholar
  3. 3.
    Preim, B., Ritter, F.: Techniken zur Hervorhebung von Objekten in medizinischen 3d-Visualisierungen. In: Simulation und Visualisierung, pp. 187–200 (2002)Google Scholar
  4. 4.
    Fuchs, G., Reichart, D., Schumann, H., Forbrig, P.: Maintenance Support – Case Study for a Multimodal Mobile User Interface. In: IS&T/SPIE’s 16th Ann.Symp.Electronic Imaging: Multimedia on Mobile Devices II (2006)Google Scholar
  5. 5.
    Chazelle, B., Dobkin, D.P., Shouraboura, N., Tal, A.: Strategies for polyhedral surface decomposition: an experimental study. In: SCG 1995: Proceedings of the eleventh annual symposium on Computational geometry, pp. 297–305. ACM Press, New York (1995)CrossRefGoogle Scholar
  6. 6.
    Li, X., Toon, T.W., Huang, Z.: Decomposing polygon meshes for interactive applications. In: I3D 2001: Proceedings of the 2001 symposium on Interactive 3D graphics, pp. 35–42. ACM Press, New York (2001)CrossRefGoogle Scholar
  7. 7.
    Attene, M., Katz, S., Mortara, M., Patanè, G., Spagnuolo, M., Tal, A.: Mesh segmentation - a comparative study. IEEE International Conference on Shape Modeling and Applications (SMI 2006), 7 (2006)Google Scholar
  8. 8.
    Garland, M., Willmott, A., Heckbert, P.S.: Hierarchical face clustering on polygonal surfaces. In: I3D 2001: Proceedings of the 2001 symposium on Interactive 3D graphics, pp. 49–58. ACM, New York (2001)CrossRefGoogle Scholar
  9. 9.
    Mangan, A.P., Whitaker, R.T.: Partitioning 3d surface meshes using watershed segmentation. IEEE Transactions on Visualization and Computer Graphics 5(4), 308–321 (1999)CrossRefGoogle Scholar
  10. 10.
    Attene, M., Falcidieno, B., Spagnuolo, M.: Hierarchical mesh segmentation based on fitting primitives. Vis. Comput. 22(3), 181–193 (2006)CrossRefGoogle Scholar
  11. 11.
    Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22(3), 954–961 (2003)CrossRefGoogle Scholar
  12. 12.
    Katz, S., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extraction. The Visual Computer 21(8–10), 649–658 (2005)CrossRefGoogle Scholar
  13. 13.
    Liu, R., Zhang, H.: Segmentation of 3d meshes through spectral clustering. In: PG 2004: Proceedings of the Computer Graphics and Applications, 12th Pacific Conference, Washington, DC, USA, pp. 298–305. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  14. 14.
    Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1), 227–248 (2003)CrossRefGoogle Scholar
  15. 15.
    Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Plumber: a method for a multi-scale decomposition of 3d shapes into tubular primitives and bodies. In: SM 2004: Proceedings of the 9th ACM symposium on Solid modeling and applications, Genoa, Italy, pp. 339–344. Eurographics Association (2004)Google Scholar
  16. 16.
    Zhou, Y., Huang, Z.: Decomposing polygon meshes by means of critical points. In: MMM 2004: Proceedings of the 10th International Multimedia Modelling Conference, Washington, DC, USA, p. 187. IEEE Computer Society Press, Los Alamitos (2004)CrossRefGoogle Scholar
  17. 17.
    Bespalov, D., Shokoufandeh, A., Regli, W.C., Sun, W.: Local feature extraction using scale-space decomposition. In: Computers und Information in Engineering Conference (DETC 2004-57702). ASME Design Engineering Technical Conferences. ASME Press (2004)Google Scholar
  18. 18.
    Attene, M., Robbiano, F., Spagnuolo, M., Falcidieno, B.: Semantic annotation of 3d surface meshes based on feature characterization. In: Falcidieno, B., Spagnuolo, M., Avrithis, Y., Kompatsiaris, I., Buitelaar, P. (eds.) SAMT 2007. LNCS, vol. 4816, pp. 126–139. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  19. 19.
    Hoffman, D., Richards, W.: Parts of recognition. In: Pinker, S. (ed.). Visual Cognition, pp. 65–96. MIT Press, Cambridge (1985)Google Scholar
  20. 20.
    Strothotte, T., Schlechtweg, S.: Non-Photorealistic Computer Graphics: Modeling, Rendering, and Animation. Morgan Kaufman Publisher, Los Altos (2002)Google Scholar
  21. 21.
    Diepstraten, J., Weiskopf, D., Ertl, T.: Transparency in interactive technical illustrations. Computer Graphics Forum 21(3), 317–325 (2002)CrossRefGoogle Scholar
  22. 22.
    Bruckner, S., Groller, M.E.: Volumeshop: An interactive system for direct volume illustration. vis, 85 (2005)Google Scholar
  23. 23.
    Diepstraten, J., Weiskopf, D., Ertl, T.: Interactive cutaway illustrations. Computer Graphics Forum 22(3), 523–532 (2003)CrossRefGoogle Scholar
  24. 24.
    Götzelmann, T., Hartmann, K., Strothotte, T.: Contextual grouping of labels. In: Schulze, T., Horton, G., Preim, B., Schlechtweg, S. (eds.) 17th Conference on Simulation and Visualization, pp. 245–258. SCS Publishing House (2006)Google Scholar
  25. 25.
    Beckhaus, S., Ritter, F., Strothotte, T.: Guided exploration with dynamic potential fields: the cubicalpath system. Computer Graphics Forum 20(4), 201–210 (2001)zbMATHCrossRefGoogle Scholar
  26. 26.
    Ali, K., Hartmann, K., Strothotte, T.: Label Layout for Interactive 3D Illustrations. Journal of WSCG 13(1–3), 1–8 (2005)Google Scholar
  27. 27.
    Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and Magic Lenses: The See-Through Interface. Computer Graphics 27 (Annual Conference Series), 73–80 (1993)Google Scholar
  28. 28.
    Bier, E.A., Stone, M.C., Fishkin, K., Buxton, W., Baudel, T.: A taxonomy of see-through tools. In: Proceedings of CHI 1994 conference, pp. 358–364. Addison-Wesley, Reading (1994)Google Scholar
  29. 29.
    Ellis, G., Bertini, E., Dix, A.: The sampling lens: Making sense of saturated visualizations. In: Proceedings of CHI 2005, Portland, OR, USA, pp. 1351–1354. ACM Press, New York (2005)Google Scholar
  30. 30.
    Trapp, M., Glander, T., Buchholz, H., Döllner, J.: 3d generalization lenses for interactive focus + context visualization of virtual city models. In: Proceedings 12th International Conference Information Visualisation (IV 2008), London, UK, IEEE Computer Society Press, Los Alamitos (2008)Google Scholar
  31. 31.
    Viega, J., Conway, M.J., Williams, G., Pausch, R.: 3d magic lenses. In: UIST 1996: Proceedings of the 9th annual ACM symposium on User interface software and technology, pp. 51–58. ACM Press, New York (1996)CrossRefGoogle Scholar
  32. 32.
    Looser, J., Billinghurst, M., Cockburn, A.: Through the looking glass: the use of lenses as an interface tool for augmented reality interfaces. In: GRAPHITE 2004: Proceedings of the 2nd international conference on Computer graphics and interactive techniques in Australasia and South East Asia, pp. 204–211. ACM, New York (2004)CrossRefGoogle Scholar
  33. 33.
    Götzelmann, T., Götze, M., Ali, K., Hartmann, K., Strothotte, T.: Annotating Images through Adaptation: An Integrated Text Authoring and Illustration Framework. Journal of WSCG 15(1–3), 115–122 (2007)Google Scholar
  34. 34.
    Alcocer, P.V.: On the Selection of Good Views and its Application to Computer Graphics. Phd thesis, University of Catalana, Barcelona, Spain (2004)Google Scholar
  35. 35.
    Fuchs, G.A., Luboschik, M., Hartmann, K., Ali, K., Strothotte, T., Schumann, H.: Adaptive labeling for interactive mobile information systems. IV, 453–459 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Georg Fuchs
    • 1
  • Mathias Holst
    • 1
  • René Rosenbaum
    • 1
  • Heidrun Schumann
    • 1
  1. 1.Institute for Computer ScienceUniversity of Rostock 

Personalised recommendations