Modeling the Nonlinear Nature of Response Time in the Vertical Fragmentation Design of Distributed Databases

  • Rodolfo A. Pazos R.
  • Graciela Vázquez A.
  • Joaquín Pérez O.
  • José A. Martínez F.
Part of the Advances in Soft Computing book series (AINSC, volume 50)

Abstract

The generalized use of the Internet has facilitated the implementation of distributed database (DDB) systems, which are becoming increasingly common-place. Unfortunately, though there exist many models for optimizing the design of DDBs (i.e., the distribution of data), they usually seek to optimize the transmission and processing costs of queries and overlook the delays incurred by their transmission and processing, which can be a major concern for Internet-based systems. In this paper a mathematical model is presented, which describes the behavior of a DDB with vertical fragmentation and permits to optimize its design taking into account the roundtrip response time (query transmission time, query processing time, and response transmission time).

Keywords

Distributed databases vertical fragmentation mathematical optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ozsu, M.T., Valduriez, P.: Principles of Distributed Database Systems. Prentice Hall, USA (1999)Google Scholar
  2. 2.
    Chakravarthy, S., Muthuraj, J., Varadarajan, R., et al.: An Objective Function for Vertically Partitioning Relations in Distributed Databases and its Analysis. Distributed and Parallel Databases 2(2), 183–207 (1994)CrossRefGoogle Scholar
  3. 3.
    Tamhankar, A.M., Ram, S.: Database Fragmentation and Allocation: an Integrated Methodology and Case Study. IEEE Transactions Systems, Man and Cybernetics Part A 28, 288–305 (1998)CrossRefGoogle Scholar
  4. 4.
    Golfarelli, M., Maio, D., Rizzi, S.: Vertical Fragmentation of Views in Relational Data Warehouses. In: Proc. Settimo Convegno Nazionale Sistemi Evoluti per Basi di Dati (SEBD 1999), Villa Olmo, Italy, pp. 23–25 (1999)Google Scholar
  5. 5.
    Pérez, J., Pazos, R., Frausto, J., et al.: Vertical Fragmentation and Allocation in Distributed Databases with Site Capacity Restrictions Using the Threshold Accepting Algorithm. In: Cairó, O., Cantú, F.J. (eds.) MICAI 2000. LNCS, vol. 1793, pp. 75–81. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Ulus, T., Uysal, M.: Heuristic Approach to Dynamic Data Allocation in Distributed Database Systems. Pakistan Journal of Information and Technology 2(3), 231–239 (2003)Google Scholar
  7. 7.
    Pérez, J., Pazos, R., Santaolaya, R., et al.: Data-Object Replication, Distribution, and Mobility in Network Environments. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 539–545. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Kleinrock, L.: Queueing Systems. Theory, vol. 1. Wiley-Interscience, USA (1975)MATHGoogle Scholar
  9. 9.
    Kleinrock, L.: Communication Nets: Stochastic Message Flow and Delay. Dover Publications, USA (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Rodolfo A. Pazos R.
    • 1
  • Graciela Vázquez A.
    • 2
  • Joaquín Pérez O.
    • 3
  • José A. Martínez F.
    • 1
  1. 1.Instituto Tecnológico de Cd. MaderoCd. MaderoMexico
  2. 2.ESIME, Instituto Politécnico NacionalMexico CityMexico
  3. 3.Centro Nacional de Investigación y Desarrollo TecnológicoCuernavacaMexico

Personalised recommendations