Advertisement

Rewriting Logic Using Strategies for Neural Networks: An Implementation in Maude

  • Gustavo Santos-García
  • Miguel Palomino
  • Alberto Verdejo
Part of the Advances in Soft Computing book series (AINSC, volume 50)

Summary

A general neural network model for rewriting logic is proposed. This model, in the form of a feedforward multilayer net, is represented in rewriting logic along the lines of several models of parallelism and concurrency that have already been mapped into it. By combining both a right choice for the representation operations and the availability of strategies to guide the application of our rules, a new approach for the classical backpropagation learning algorithm is obtained. An example, the diagnosis of glaucoma by using campimetric fields and nerve fibres of the retina, is presented to illustrate the performance and applicability of the proposed model.

Keywords

Neural networks rewriting logic Maude strategies executability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  2. 2.
    Eker, S., Martí-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and rewriting. In: Archer, M., de la Tour, T.B., Muñoz, C.A. (eds.) 6th International Workshop on Strategies in Automated Deduction, STRATEGIES 2006, Part of FLOC 2006, Seattle, Washington, August 16. Electronic Notes in Theoretical Computer Science, vol. 174(11), pp. 3–25. Elsevier, Amsterdam (2007)Google Scholar
  3. 3.
    Hernández Galilea, E., Santos-García, G., Franco Suárez-Bárcena, I.: Identification of glaucoma stages with artificial neural networks using retinal nerve fibre layer analysis and visual field parameters. In: Corchado, E., Corchado, J.M., Abraham, A. (eds.) Innovations in Hybrid Intelligent Systems, Advances in Soft Computing, pp. 418–424. Springer, Heidelberg (2007)Google Scholar
  4. 4.
    Lippman, R.P.: An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22 (1987)Google Scholar
  5. 5.
    Martí-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework. In: Gabbay, D. (ed.) Handbook of Philosophical Logic, 2nd edn., vol. 9, pp. 1–81. Kluwer Academic Press, Dordrecht (2002)Google Scholar
  6. 6.
    Martí-Oliet, N., Meseguer, J.: Rewriting logic: Roadmap and bibliography. Theoretical Computer Science 285(2), 121–154 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Meseguer, J.: Research directions in rewriting logic. In: Berger, U., Schwichtenberg, H. (eds.) Computational Logic: Marktoberdorf, Germany, July 29 – August 6, vol. 165, pp. 347–398. NATO Advanced Study Institute (1997)Google Scholar
  8. 8.
    Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Talcott, C.L.: An actor rewriting theory. In: Meseguer, J. (ed.) Workshop on Rewriting Logic and its Applications, WRLA 1996. Electronic Notes in Theoretical Computer Science, vol. 4, pp. 360–383. Elsevier, Amsterdam (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Gustavo Santos-García
    • 1
  • Miguel Palomino
    • 2
  • Alberto Verdejo
    • 2
  1. 1.Universidad de Salamanca 
  2. 2.Departamento de Sistemas Informáticos y ComputaciónUCM 

Personalised recommendations