Advertisement

Electrical Spin Injection into Single InGaAs Quantum Dots

  • Michael Hetterich
  • Wolfgang Löffler
  • Pablo Aßhoff
  • Thorsten Passow
  • Dimitri Litvinov
  • Dagmar Gerthsen
  • Heinz Kalt
Part of the Advances in Solid State Physics book series (ASSP, volume 48)

Abstract

In the context of a potential future quantum information processing we investigate the concurrent initialization of electronic spin states in InGaAs quantum dots (QDs) via electrical injection∈dex{spin!injection} from ZnMn(S)Se spin aligners. Single dots can be read out optically through metallic apertures on top of our spin-injection light-emitting diodes (spin-LEDs). A reproducible spin polarization degree close to 100% is observed for a subset of the QD ensemble. However, the average polarization degree is lower and drops with increasing QD emission wavelength. Our measurements suggest that ∈dex{spin!relaxation}spin relaxation processes outside the QDs, related to the energetic position of the electron quasi-Fermi level, as well as defect-related spin scattering at the III–V/II–VI interface should be responsible for this effect, leading us to an improved device design. Finally, we present first time-resolved ∈dex{electroluminescence measurement}electroluminescence measurements of the polarization dynamics using ns-pulsed electrical excitation. The latter should not only enable us to gain a more detailed understanding of the spin and carrier relaxation processes in our devices. They are also the first step towards future time-resolved optical and electrical spin manipulation experiments.

Keywords

Spin Polarization Spin Relaxation Polarization Degree Spin Aligner Electronic Spin State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Loss, D. P. DiVincenzo: Phys. Rev. A 57, 120 (1998)CrossRefADSGoogle Scholar
  2. 2.
    J. M. Kikkawa, D. D. Awschalom: Nature (London) 397, 139 (1999)CrossRefADSGoogle Scholar
  3. 3.
    D. Hägele, M. Oestreich, W. W. Rühle, N. Nestle, K. Eberl: Appl. Phys. Lett. 73, 1580 (1998)CrossRefADSGoogle Scholar
  4. 4.
    M. Paillard, X. Marie, P. Renucci, T. Amand, A. Jbeli, J. M. Gérard: Phys. Rev. Lett. 86, 1634 (2001)CrossRefADSGoogle Scholar
  5. 5.
    M. Scheibner, G. Bacher, S. Weber, A. Forchel, Th. Passow, D. Hommel: Phys. Rev. B 67, 153302 (2003)CrossRefADSGoogle Scholar
  6. 6.
    T. Flissikowski, A. Hundt, M. Lowisch, M. Rabe, F. Henneberger: Phys. Rev. Lett. 86, 3172 (2001)CrossRefADSGoogle Scholar
  7. 7.
    E. Tsitsishvili, R. v. Baltz, H. Kalt: Phys. Rev. B 67, 205330 (2003)CrossRefADSGoogle Scholar
  8. 8.
    S. Fathpour, M. Holub, S. Chakrabarti, P. Bhattacharya: Electron. Lett. 40, 694 (2004)CrossRefGoogle Scholar
  9. 9.
    M. Hetterich, W. Löffler, J. Fallert, N. Höpcke, H. Burger, T. Passow, S. Li, B. Daniel, B. Ramadout, J. Lupaca-Schomber, J. Hetterich, D. Litvinov, D. Gerthsen, C. Klingshirn, H. Kalt: Phys. Stat. Sol. B 243, 3812 (2006)CrossRefADSGoogle Scholar
  10. 10.
    R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, L. W. Molenkamp: Nature (London) 402, 787 (1999)CrossRefADSGoogle Scholar
  11. 11.
    Y. Ohno, D. K. Young, B. Beschofen, F. Matsukura, H. Ohno, D. D. Awschalom: Nature (London) 402, 790 (1999)CrossRefADSGoogle Scholar
  12. 12.
    R. M. Stroud, A. T. Hanbicki, Y. D. Park, G. Kioseoglou, A. G. Petukhov, B. T. Jonker, G. Itskos, A. Petrou: Phys. Rev. Lett. 89, 166602 (2002)CrossRefADSGoogle Scholar
  13. 13.
    W. Löffler, D. Tröndle, J. Fallert, H. Kalt, D. Litvinov, D. Gerthsen, J. Lupaca-Schomber, T. Passow, B. Daniel, J. Kvietkova, M. Grün, C. Klingshirn, M. Hetterich: Appl. Phys. Lett. 88, 062105 (2006)CrossRefADSGoogle Scholar
  14. 14.
    W. Löffler, M. Hetterich, C. Mauser, S. Li, T. Passow, H. Kalt: Appl. Phys. Lett. 90, 232105 (2007)CrossRefADSGoogle Scholar
  15. 15.
    M. Hetterich, W. Löffler, J. Fallert, T. Passow, B. Daniel, J. Lupaca-Schomber, J. Hetterich, S. Li, C. Klingshirn, H. Kalt: Electrical spin injection into InGaAs quantum dot ensembles and single quantum dots, Proc. 28th Int. Conf. on the Physics of Semiconductors, Vienna, Austria, 2006, AIP Conf. Proc. 893, 1285 (2007)CrossRefADSGoogle Scholar
  16. 16.
    W. Löffler, N. Höpcke, C. Mauser, J. Fallert, T. Passow, B. Daniel, S. Li, D. Litvinov, D. Gerthsen, H. Kalt, M. Hetterich: Spin and carrier relaxation dynamics in InAs/GaAs quantum-dot spin-LEDs, Int. Conf. on Nanoscience and Technology (ICN+T) 2006, Basel, Switzerland, J. Phys.: Conf. Series 61, 745 (2007)CrossRefADSGoogle Scholar
  17. 17.
    W. Löffler, D. Tröndle, J. Fallert, E. Tsitsishvili, H. Kalt, D. Litvinov, D. Gerthsen, J. Lupaca-Schomber, T. Passow, B. Daniel, J. Kvietkova, M. Hetterich: Electrical spin injection into InGaAs quantum dots, 8th Int. Workshop on Nonlinear Optics and Excitation Kinetics in Semiconductors (NOEKS 8), Münster, Germany, 2006, Phys. Stat. Sol. C 3, 2406 (2006)CrossRefGoogle Scholar
  18. 18.
    W. Löffler, D. Tröndle, H. Kalt, D. Litvinov, D. Gerthsen, J. Lupaca-Schomber, T. Passow, B. Daniel, J. Kvietkova, M. Hetterich: Electrical spin injection from ZnMnSe into InGaAs-based quantum structures, Proc. 12th Int. Conf. on Modulated Semiconductor Structures (MSS-12), Albuquerque, 2005, Physica E 32, 434 (2006)CrossRefADSGoogle Scholar
  19. 19.
    T. Passow, S. Li, D. Litvinov, W. Löffler, J. Fallert, B. Daniel, J. Lupaca-Schomber, J. Kvietková, D. Gerthsen, H. Kalt, M. Hetterich: Investigation of InAs quantum dot growth for electrical spin injection devices, 4th Int. Conf. on Quantum Dots (QD2006), Chamonix-Mont Blanc, France, Phys. Stat. Sol. C 3, 3943 (2006)CrossRefGoogle Scholar
  20. 20.
    W. Löffler, M. Hetterich, C. Mauser, S. Li, J. Leuthold, H. Kalt: Spin-polarized excitonic emission from quantum dots after electrical injection, 10th Conf. on the Optics of Excitons in Confined Systems (OECS 10), Patti, Messina, Italy, 2007, Phys. Stat. Sol. B, DOI: 10.1002/pssb.200777612Google Scholar
  21. 21.
    G. Schmidt: J. Phys. D 38, R107 (2005)CrossRefADSGoogle Scholar
  22. 22.
    J. Seufert, G. Bacher, H. Schömig, A. Forchel, L. Hansen, G. Schmidt, L. W. Molenkamp: Phys. Rev. B 69, 035311 (2004)CrossRefADSGoogle Scholar
  23. 23.
    J. K. Furdyna: J. Appl. Phys. 64, R29 (1988)CrossRefADSGoogle Scholar
  24. 24.
    O. Goede, W. Heimbrodt: Phys. Stat. Sol. B 146, 11 (1988)CrossRefADSGoogle Scholar
  25. 25.
    D. Litvinov, D. Gerthsen, B. Daniel, C. Klingshirn, M. Hetterich: J. Appl. Phys. 100, 023523 (2006)CrossRefADSGoogle Scholar
  26. 26.
    M. Hetterich, B. Daniel, C. Klingshirn, P. Pfundstein, D. Litvinov, D. Gerthsen, K. Eichhorn, D. Spemann: Lattice parameter and elastic constants of cubic Zn1-xMn_xSe epilayers grown by molecular-beam epitaxy, Proc. 11th Int. Conf. on II–VI compounds, Niagara Falls, New York, USA, 2003, Phys. Stat. Sol. C 1, 649 (2004)CrossRefGoogle Scholar
  27. 27.
    J. Kvietkova, B. Daniel, M. Hetterich, M. Schubert, D. Spemann, D. Litvinov, D. Gerthsen: Phys. Rev. B 70, 045316 (2004)CrossRefADSGoogle Scholar
  28. 28.
    B. Daniel, K. C. Agarwal, J. Lupaca-Schomber, C. Klingshirn, M. Hetterich: Appl. Phys. Lett. 87, 212103 (2005)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael Hetterich
    • 1
  • Wolfgang Löffler
    • 1
  • Pablo Aßhoff
    • 1
  • Thorsten Passow
    • 1
  • Dimitri Litvinov
    • 2
  • Dagmar Gerthsen
    • 2
  • Heinz Kalt
    • 1
  1. 1.Institut für Angewandte Physik and DFG Center for Functional Nanostructures (CFN)Universität Karlsruhe (TH)Germany
  2. 2.Laboratorium für Elektronenmikroskopie (LEM) and CFNUniversität Karlsruhe (TH)Germany

Personalised recommendations