Advertisement

Intrinsic Non-Exponential Decay of Time-Resolved Photoluminescence from Semiconductor Quantum Dots

  • Jan Wiersig
  • Christopher Gies
  • Norman Baer
  • Frank Jahnke
Part of the Advances in Solid State Physics book series (ASSP, volume 48)

Abstract

A general introduction is presented to the recently observed intrinsic non-exponential and excitation intensity-dependent decay of time-resolved photoluminescence from semiconductor quantum dots. The commonly used two-level approximation fails in this situation since it relies on fully correlated carriers. In a semiconductor, however, the correlations are subject to scattering and dephasing processes. Hence, carriers are in general not fully correlated. It is shown that this effect leads to a non-exponential and excitation intensity-dependent decay of photoluminescence. The origin of the phenomenon is discussed in detail for a simplified situation. The full problem is studied numerically on the basis of a microscopic theory that includes Coulomb and carrier-photon correlation effects.

Keywords

Excitation Intensity Microscopic Theory Wetting Layer Singlet Level Cluster Expansion Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Michler: Single Quantum Dots: Fundamentals, Applications, and New Concepts, Topics in Applied Physics (Springer, Berlin, 2003)Google Scholar
  2. 2.
    P. Lodahl, A. Floris van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, W. L. Vos: Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals, Nature (London) 430, 654 (2004)Google Scholar
  3. 3.
    D. Morris, N. Perret, S. Fafard: Carrier energy relaxation by means of A uger processes in InAs/GaAs self-assembled quantum dots, Appl. Phys. Lett. 75, 3593 (1999)Google Scholar
  4. 4.
    I. L. Krestnikov, N. N. Ledentsov, A. Hoffmann, D. Bimberg, A. V. Sakharnov, W. V. Lundin, A. S. Tsatsul’nikov, A. F. Usikov, Z. I. Alferov, Y. G. Musikhin, D. Gerthsen: Quantum dot origin of luminescence in InGaN-GaN structures, Phys. Rev. B 66, 155310 (2002)CrossRefADSGoogle Scholar
  5. 5.
    R. A. Oliver, G. A. D. Briggs, M. J. Kappers, C. J. Humphreys, S. Yasin, J. H. Rice, J. D. Smith, R. A. Taylor: InGaN quantum dots grown by metalorganic vapor phase epitaxy employing a post-growth nitrogen anneal, Appl. Phys. Lett. 83, 755 (2003)CrossRefADSGoogle Scholar
  6. 6.
    M. Schwab, H. Kurtze, T. Auer, T. Berstermann, M. Bayer, J. Wiersig, N. Baer, C. Gies, F. Jahnke, J. Reithmaier, A. Forchel, M. Benyoucef, P. Michler: Radiative emission dynamics of quantum dots in a single cavity micropillar, Phys. Rev. B 74, 045323 (2006)CrossRefADSGoogle Scholar
  7. 7.
    N. Baer, C. Gies, J. Wiersig, F. Jahnke: Luminescence of a semiconductor quantum dot system, Eur. Phys. J. B 50, 411–418 (2006)CrossRefADSGoogle Scholar
  8. 8.
    T. R. Nielsen, P. Gartner, F. Jahnke: Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers, Phys. Rev. B 69, 235314 (2004)CrossRefADSGoogle Scholar
  9. 9.
    J. Seebeck, T. R. Nielsen, P. Gartner, F. Jahnke: Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation, Phys. Rev. B 71, 125327 (2005)CrossRefADSGoogle Scholar
  10. 10.
    J. Fricke: Transport equations including many-particle correlations for an arbitrary quantum system: A general formalism, Ann. Phys. 252, 479–498 (1996)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    N. Baer, P. Gartner, F. Jahnke: Coulomb effects in semiconductor quantum dots, Eur. Phys. J. B 42, 231–237 (2004)CrossRefADSGoogle Scholar
  12. 12.
    M. Kira, F. Jahnke, W. Hoyer, S. W. Koch: Quantum theory of spontaneous emission and coherent effects in semiconductor microstructures, Prog. Quant. Electr. 23, 189 (1999)CrossRefADSGoogle Scholar
  13. 13.
    J. H. Eberly, K. Wódkiewicz: The time-dependent physical spectrum of light, J. Opt. Soc. Am. 67, 1252 (1977)CrossRefADSGoogle Scholar
  14. 14.
    B. Krummheuer, V. M. Axt, T. Kuhn: Theory of pure dephasing and the resulting absorption lineshape in semiconductor quantum dots, Phys. Rev. B 65, 195313 (2002)CrossRefADSGoogle Scholar
  15. 15.
    E. A. Muljarov, R. Zimmermann: Dephasing in quantum dots: Quadratic coupling to acoustic phonons, Phys. Rev. Lett. 85, 1516 (2000)CrossRefGoogle Scholar
  16. 16.
    W. Hoyer, M. Kira, S. Koch: Influence of Coulomb and phonon interaction on the exciton formation dynamics in semiconductor heterostructures, Phys. Rev. B 67, 155113 (2003)CrossRefADSGoogle Scholar
  17. 17.
    W. Hoyer: Quantentheorie zu Exzitonbildung und Photolumineszenz in Halbleitern, Ph.D. thesis, University of Marburg, Germany (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jan Wiersig
    • 1
  • Christopher Gies
    • 1
  • Norman Baer
    • 1
  • Frank Jahnke
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of BremenGermany

Personalised recommendations