Advertisement

Organometallic Nanojunctions Probed by Different Chemistries: Thermo-, Photo-, and Mechano-Chemistry

  • Martin Konôpka
  • Robert Turanský
  • Nikos L. Doltsinis
  • Dominik Marx
  • Ivan Štich
Part of the Advances in Solid State Physics book series (ASSP, volume 48)

Abstract

Based on ab-initio simulations, three different types of chemistry, namely thermo-, photo-, and mechano-chemistry are compared for organometallic nanojunctions. In the first part we provide the first direct comparison of mechanical versus thermal activation of bond breaking. Study of thiolate/copper interfacesthiolate/copper interfaces provides evidence for vastly different reaction pathways and product classes. This is understood in terms of directional mechanical manipulation of coordination numbers and system fluctuations in the process of mechanical activation. In the second part mechanically and opto-mechanically controlled azobenzene (AB) switch based on AB-gold break-junction have been studied. It was found that both cistrans and transcis mechanically driven switchings in the lowest singlet state are possible. Bidirectional optical switching of mechanically strained AB through first excited singlet state was also predicted, provided that the length of the molecule is adjusted towards the target isomer equilibrium length. The simulations reveal the paramount importance played by mechanical activation for this class of systems.

Keywords

Coordination Number Excited Singlet State Compressive Regime Lower Electronic State Photochromic Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ellenbogen, J.C., Love, J.C., Architectures for Molecular Electronic Computers. IEEE, New York, (2000)Google Scholar
  2. 2.
    Joachim, C., Gimzewski, J.K., Aviram, A., Electronics using hybrid-molecular and mono-molecular devices, Nature 408, 541–548 (2000)CrossRefADSGoogle Scholar
  3. 3.
    Park, J., Pasupathy, A.N., Goldsmith, J.I., Chang, C., Yaish, Y.,Petta, J.R., Rinkoski, M., Sethna, J.P., Abruña, H.D., McEuen,P.L., Ralph, D.C., Coulomb blockade and the Kondo effect in single-atom transistors, Nature 417, 722–725 (2002)CrossRefADSGoogle Scholar
  4. 4.
    Liang, W., Shores, M.P., Bockrath, M., Long, J.R., Park, H., Kondo resonance in a single-molecule transistor, Nature 417, 725–729 (2002)CrossRefADSGoogle Scholar
  5. 5.
    Carey Lea, M., Disruption of the silver haloid molecule by mechanical force, Phil. Mag. 34, 46–50 (1892)Google Scholar
  6. 6.
    Beyer, M.K., Clausen-Schaumann, H., Mechanochemistry: The mechanical activation of covalent bonds, Chem. Rev. 105, 2921–2948 (2005)CrossRefGoogle Scholar
  7. 7.
    Frank, I., Mechanically induced chemistry: New perspective on the nanoscale, Angew. Chem. Int. Ed. 45, 852–854 (2006)CrossRefGoogle Scholar
  8. 8.
    Granick, S., Bae, S. C., Physical chemistry – Stressed molecules break down, Nature 440, 160–161 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Rosen, B.M., Percec, V., Mechanochemistry – A reaction to stress, Nature 446, 381–382 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Grandbois, M., et al., How strong is a covalent bond? Science 283, 1727–1730 (1999)CrossRefADSGoogle Scholar
  11. 11.
    Saitta, A.M., et al., Influence of a knot on the strength of a polymer strand, Nature 399, 46–48 (1999)CrossRefADSGoogle Scholar
  12. 12.
    Aktah, D., Frank, I.: Breaking bonds by mechanical stress: When do electrons decide for the other side? J. Am. Chem. Soc. 124, 3402–3406 (2002)CrossRefGoogle Scholar
  13. 13.
    Krüger, D., et al., Pulling monatomic gold wires with single molecules: An ab initio simulation, Phys. Rev. Lett. 89, 186402 (2002)CrossRefADSGoogle Scholar
  14. 14.
    Krüger, D., et al., Towards “mechanochemistry”: Mechanically induced isomerizations of thiolate-gold clusters, Angew. Chem. Int. Ed. 42, 2251–2253 (2003)CrossRefGoogle Scholar
  15. 15.
    Vélez, P., Dassie, S.A., Leiva, E.P.M., First principles calculations of mechanical properties of 4,4(’)-bipyridine attached to Au nanowires, Phys. Rev. Lett. 95, 045503 (2005)CrossRefADSGoogle Scholar
  16. 16.
    Muraoka, T., Kinbara, K., Aida, T., Mechanical twisting of a guest photoresponsive host, Nature 440, 512–515 (2006)CrossRefADSGoogle Scholar
  17. 17.
    Novaes, F. D., et al., Oxygen clamps in gold nanowires, Phys. Rev. Lett. 96, 016104 (2006)CrossRefADSGoogle Scholar
  18. 18.
    Sheiko, S. S., et al., Adsorption-induced scission of carbon–carbon bonds, Nature 440, 191–194 (2006)CrossRefADSGoogle Scholar
  19. 19.
    Hickenboth,C. R., et al., Biasing reaction pathways with mechanical force, Nature 446, 423–427 (2007)CrossRefADSGoogle Scholar
  20. 20.
    Gimzewski, J. K. and Joachim, C., Nanoscale science of single molecules using local probes, Science 283 1683–1688 (1999)CrossRefADSGoogle Scholar
  21. 21.
    Moresco, F. and Gourdon, A., Scanning tunneling microscopy experiments on single molecular landers, PNAS 102, 8809–8814 (2005)CrossRefADSGoogle Scholar
  22. 22.
    Otero, R., Rosei, F., Besenbacher, F., Scanning tunneling microscopy manipulation of complex organic molecules on solid surfaces, Ann. Rev. Phys. Chem. 57, 497–525 (2006)CrossRefADSGoogle Scholar
  23. 23.
    Smit R.H.M., Noat, Y., Untiedt, C., Lang, N.D., van Hemert, M.C., van Ruitenbeek, J.M., Measurement of the conductance of a hydrogen molecule, Nature 419, 906–909 (2002)CrossRefADSGoogle Scholar
  24. 24.
    Liu, G. Y., Xu, S., Qian, Y.L., Nanofabrication of self-assembled monolayers using scanning probe lithography, Acc. Chem. Res. 33, 457–466 (2000)CrossRefGoogle Scholar
  25. 25.
    James, D.K. and Tour, J.M., Electrical measurements in molecular electronics, Chem. Mat. 16, 4423–4435 (2004)CrossRefGoogle Scholar
  26. 26.
    Salaita, K., Wang, Y.H., Mirkin, C.A., Applications of dip–pen nanolithography, Nat. Nanotech. 2, 145–155 (2007)CrossRefADSGoogle Scholar
  27. 27.
    Chen, F., et al., Measurement of single-molecule conductance, Ann. Rev. Phys. Chem. 58, 535–564 (2007)CrossRefADSGoogle Scholar
  28. 28.
    Schreiber, F., Self-assembled monolayers: from “simple” model systems to biofunctionalized interfaces, J. Phys.: Condens. Matter 16, R881–R900 (2004)CrossRefADSGoogle Scholar
  29. 29.
    Love, J.C., et al., Self-assembled monolayers of thiolates on metals as a form of nanotechnology, Chem. Rev. 105, 1103–1169 (2005)CrossRefGoogle Scholar
  30. 30.
    Konôpka, M., Turanský, R., Reichert, J., Fuchs, H., Marx, D., štich, I., Mechanochemistry and thermochemistry are different: Stress-induced strengthening of chemical bonds. Phys. Rev. Lett. 100, 1155031–1–4 (2008)CrossRefGoogle Scholar
  31. 31.
    Kondoh, H., Nozoye, H., Molecular process of adsorption and desorption of alkanethiol monolayers on Au(111). J. Chem. Phys. 111, 1175–1184 (1999)CrossRefADSGoogle Scholar
  32. 32.
    Konôpka, M., Rousseau, R., štich, I., Marx, D., Detaching thiolates from copper and gold clusters: Which bonds to break? J. Am. Chem. Soc. 126, 12103–12111 (2004)CrossRefGoogle Scholar
  33. 33.
    Konôpka, M., Rousseau, R., štich, I., Marx, D., Electronic origin of disorder and diffusion at a molecule-Metal interface: Self-assembled monolayers of CH3–S on Cu(111). Phys. Rev. Lett. 95, 096102–1–4 (2005)CrossRefADSGoogle Scholar
  34. 34.
    Jackson, G.J., et al., Following local adsorption sites through a surface chemical reaction: CH3SH on Cu(111). Phys. Rev. Lett. 84, 119 (2000).CrossRefADSGoogle Scholar
  35. 35.
    Lai, Y.-H., et al., Adsorption and thermal decomposition of alkanethiols on Cu(110). J. Phys. Chem. B 106, 5438 (2002).CrossRefGoogle Scholar
  36. 36.
    Marx, D., Hutter, J., Ab initio molecular dynamics: Theory and implementation. In: Grotendorst, J. (ed) Modern Methods and Algorithms of Quantum Chemistry. NIC, FZ Jülich (2000), pp. 301–449; for downloads see: www.theochem.ruhr-uni-bochum.de/go/cprev.htmlGoogle Scholar
  37. 37.
    Perdew, J.P., Burke, K., Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett. 77, 3865–3868 (1996); Phys. Rev. Lett. 78, 1396–1396 (1997)CrossRefADSGoogle Scholar
  38. 38.
    CPMD, Copyright IBM Corp 1990–2006, Copyright MPI für Festkörperforschung Stuttgart 1997–2001Google Scholar
  39. 39.
    Dürr, H., Bouas-Laurent, H. (ed.), Photochromism. Molecules and Systems. Elsevier, Amsterdam (1990)Google Scholar
  40. 40.
    Hartley, G.S., The Cis–form of Azobenzene. Nature 140, 281–281 (1937)CrossRefADSGoogle Scholar
  41. 41.
    Hugel, T., Holland, N.B., Cattani, A., Moroder, L., Seitz, M., Gaub, H.E., Single-molecule optomechanical cycle. Science 296, 1103–1106 (2002)CrossRefADSGoogle Scholar
  42. 42.
    Reichert, J., Klein, S., Konôpka, M., Turanský, R., Marx, D., Štich, I., Fuchs, H., Conductance of an illuminated metal–molecule–metal junction utilizing a near–field probe as counterelectrode. [Submitted to Rev. Sci. Inst.(2008)]Google Scholar
  43. 43.
    Dulić, D., van der Molen, S.J., Kudernac, T., Jonkman, H.T., de Jong, J.J.D., Bowden, T.N., van Esch, J., Feringa, B.L., van Wees, B.J., One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91, 207402–1–4 (2003)CrossRefADSGoogle Scholar
  44. 44.
    Cimelli, C., Granucci, G., Persio, M., Are azobenzenophanes rotation-restricted? J. Chem. Phys. 123, 174317–1–10 (2005)CrossRefADSGoogle Scholar
  45. 45.
    Nonnenberg, C., Gaub, H., Frank, I., First-principles simulation of the photoreaction of a capped azobenzene: The rotational pathway is feasible. Chem. Phys. Chem. 7, 1455–1461 (2006)Google Scholar
  46. 46.
    Turanský, R., Konôpka, M., Reichert, J., Fuchs, H., Marx, D., Štich, I., Mechanical and opto-mechanical switching of azobenzene metal-organic junctions. Submitted (2008)Google Scholar
  47. 47.
    see http://www.accelrys.comGoogle Scholar
  48. 48.
    Jacobsen, K.W., Norskov, J.K., Puska, M.J., Interatomic interactions in the effective-medium theory, Phys. Rev. B 35, 7423–7442 (1987)CrossRefADSGoogle Scholar
  49. 49.
    Frank, I., Hutter, J., Marx, D., Parrinello, M., Molecular dynamics in low-spin excited states, J. Chem. Phys. 108, 4060–4069 (1998)CrossRefADSGoogle Scholar
  50. 50.
    Grimm, S., Nonnenberg, C., Frank, I., Restricted open-shell Kohn–Sham theory for π - π* transitions. I. Polyenes, cyanines, and protonated imines, J. Chem. Phys. 119, 11574–11584 (2003)CrossRefADSGoogle Scholar
  51. 51.
    Goedecker, S., Teter, M., Hutter, J., Separable dual–space Gaussian pseudopotentials, Phys. Rev. B 54, 1703–1710 (1996)CrossRefADSGoogle Scholar
  52. 52.
    Hartwigsen, C., Goedecker, S., Hutter, J., Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58, 3641–3662 (1998)CrossRefADSGoogle Scholar
  53. 53.
    Andersson, J.-Å., Petterson, R., Tegnér, L., Flash photolysis experiments in the vapour phase at elevated temperatures I: Spectra of azobenzene and the kinetics of its thermal cis–trans isomerization. J. Photochem. 20, 17–32 (1982)CrossRefGoogle Scholar
  54. 54.
    Fliegl, H., Köhn, A., Hättig, C., Ahlrichs, R.: Ab Initio Calculations of the Vibrational and Electronic Spectra of trans– and cis–Azobenzene. J. Am. Chem. Soc. 125, 9821–9827 (2003)CrossRefGoogle Scholar
  55. 55.
    Turanský, R., Konôpka, M., Reichert, J., Fuchs, H., Marx, D., Štich, I.: (In preparation)Google Scholar
  56. 56.
    Cembran, A., Bernardi, F., Garavelli, M., Gagliardi, L., Orlandi, G.: On the Mechanism of the cis-trans isomerization in the lowest electronic states of azobenzene: S0, S1, and T1, J. Am. Chem. Soc. 126, 3234–3243 (2004)Google Scholar
  57. 57.
    Gagliardi, L., Orlandi, G., Bernardi, F., Cembran, A., Garavelli, M., A theoretical study of the lowest electronic states of azobenzene: The role of torsion coordinate in the cis-trans photoisomerization, Theor. Chem. Acc. 111, 363–372 (2004)Google Scholar
  58. 58.
    Choi, B.-Y., Kahng, S.-J., Kim, S., Kim, H., Kim, H.W., Song, Y.J., Ihm, J., Kuk, Y., Conformational molecular switch of the azobenzene molecule: A scanning tunneling microscopy Study, Phys. Rev. Lett. 96, 156106–1–4 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Martin Konôpka
    • 1
  • Robert Turanský
    • 1
  • Nikos L. Doltsinis
    • 2
    • 3
  • Dominik Marx
    • 2
  • Ivan Štich
    • 4
  1. 1.Center for Computational Materials Science Department of PhysicsSlovak University of Technology (FEI STU)81219 Bratislava
  2. 2.Lehrstuhl für Theoretische ChemieRuhr–Universitä Bochum44780 BochumGermany
  3. 3.Department of PhysicsKing’s College LondonLondonUnited Kingdom
  4. 4.Institute of PhysicsSlovak Academy of Sciences84511 BratislavaSlovakia

Personalised recommendations