Advertisement

Self-Reconfigurable Mixed-Signal Integrated Circuits Architecture Comprising a Field Programmable Analog Array and a General Purpose Genetic Algorithm IP Core

  • Didier Keymeulen
  • Adrian Stoica
  • Ricardo Zebulum
  • Srinivas Katkoori
  • Pradeep Fernando
  • Hariharan Sankaran
  • Mohammad Mojarradi
  • Taher Daud
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5216)

Abstract

Development of analog electronics solutions for space avionics is expensive and time-consuming. Lack of flexible analog devices, counterparts to digital Field Programmable Gate Arrays (FPGA), prevents analog designers from the benefits of rapid prototyping. This forces them to expensive and lengthy custom design, fabrication, and qualification of application specific integrated circuits (ASIC). This paper describes a recent FPAA design, the Self-Reconfigurable Analog Array (SRAA) that was developed at JPL. It has a large variety of analog building block components in the cells of the array and allows to operate over a wide range of temperature using a built in general purpose genetic algorithm (GA) engine as an intellectual property (IP) core.

Keywords

Field Programmable Analog Array Self-reconfigurable Self-Healing and Compensation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cressler, J.D.: Issues and Opportunities for Complementary SiGe HBT Technology. In: Proceedings of the 2006 Electrochemical Society Symposium on SiGe and Ge: Materials, Processing, and Devices, pp. 893–912 (2006)Google Scholar
  2. 2.
    Stoica, A., Zebulum, R., Keymeulen, D., Tawel, R., Daud, T., Thakoor, A.: Reconfigurable VLSI Architectures for Evolvable Hardware: from Experimental Field Programmable Transistor Arrays to Evolution-Oriented Chips. IEEE Transactions on VLSI Systems, Special Issue on Reconfigurable and Adaptive VLSI Systems 9(1), 227–232 (2001)Google Scholar
  3. 3.
    Stoica, A., Zebulum, R.S., Ferguson, M.I., Keymeulen, D., Duong, V.: Evolving Circuits in Seconds: Experiments with a Stand-Alone Board Level Evolvable System. In: 2002 NASA/DoD Conference on Evolvable Hardware, Alexandria Virginia, USA, July 15-18, 2002. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  4. 4.
    Zebulum, R.S., Stoica, A., Keymeulen, D., Ferguson, M.I., Duong, V., Guo, X., Vorperian, V.: Automatic Evolution of Tunable Filters using SABLES. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 286–296. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Stoica, A., Zebulum, R.S., Keymeulen, D., Ramesham, R., Neff, J., Katkoori, S.: Temperature-Adaptive Circuits on Reconfigurable Analog Arrays. In: First NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2006), June 2006, pp. 28–31 (2006)Google Scholar
  6. 6.
    Higuchi, T., Iwata, M., Keymeulen, D., Sakanashi, H., Murakawa, M., Kajitani, I., Takahashi, E., Toda, K., Salami, M., Kajihara, N., Otsu, N.: Real-world applications of analog and digital evolvable hardware. IEEE Tr. On Evolutionary Computation 3(3), 220–235 (1999)CrossRefGoogle Scholar
  7. 7.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Inc., Reading (1989)zbMATHGoogle Scholar
  8. 8.
    Scott, S.D., Samal, A., Seth, S.: HGA: a hardware-based genetic algorithm. ACM Press, New York (1995)Google Scholar
  9. 9.
    Jelodar, M.S., et al.: SOPC-Based Parallel Genetic Algorithm. In: Evolutionary Computation, IEEE Congress on CEC (2006)Google Scholar
  10. 10.
    Nedjah, N., de Macedo Mourelle, L.: Massively parallel hardware architecture for genetic algorithms. In: Proceedings of Euromicro Conf. on Digital System Design (2005)Google Scholar
  11. 11.
    Wakabayashi, S., et al.: GAA: a VLSI genetic algorithm accelerator with on-the-fly adaptation of crossover operators. In: ISCAS 1998 (1998)Google Scholar
  12. 12.
    Sai Mohan, K., Nowrouzian, B.: A Diversity Controlled Genetic Algorithm for Optimization of FRM Digital Filters over DBNS Multiplier Coefficient Space. In: ISCAS 2007 (2007)Google Scholar
  13. 13.
    Haupt, R., Haupt, S.: Practical Genetic Algorithms, 2nd edn. John Wiley & Sons, Inc., Chichester (2004)zbMATHGoogle Scholar
  14. 14.
    Stoica, A., Keymeulen, D., Mojarradi, M., Zebulum, R., Daud, T.: Progress in the Development of Field Programmable Analog Arrays for Space Applications. In: 2008 IEEE Aerospace Conference, March 2008, MT, USA (2008)Google Scholar
  15. 15.
    Fernando, P., Sankaran, H., Katkoori, S., Keymeulen, D., Stoica, A., Zebulum, R., Rajeshuni, R.: A Customizable FPGA IP Core Implementation of a General Purpose Genetic Algorithm Engine. In: Reconfigurable Architectures Workshop (RAW 2008), April 2008, USA (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Didier Keymeulen
    • 1
  • Adrian Stoica
    • 1
  • Ricardo Zebulum
    • 1
  • Srinivas Katkoori
    • 2
  • Pradeep Fernando
    • 2
  • Hariharan Sankaran
    • 2
  • Mohammad Mojarradi
    • 1
  • Taher Daud
    • 1
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.University of South FloridaTampaUSA

Personalised recommendations