ISCLEs: Importance Sampled Circuit Learning Ensembles for Trustworthy Analog Circuit Topology Synthesis

  • Peng Gao
  • Trent McConaghy
  • Georges Gielen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5216)


Importance Sampled Circuit Learning Ensembles (ISCLEs) is a novel analog circuit topology synthesis method that returns designer-trustworthy circuits yet can apply to a broad range of circuit design problems including novel functionality. ISCLEs uses the machine learning technique of boosting, which does importance sampling of “weak learners” to create an overall circuit ensemble. In ISCLEs, the weak learners are circuit topologies with near-minimal transistor sizes. In each boosting round, first a new weak learner topology and sizings are found via genetic programming-based “MOJITO” multi-topology optimization, then it is combined with previous learners into an ensemble, and finally the weak-learning target is updated. Results are shown for the trustworthy synthesis of a sinusoidal function generator, and a 3-bit A/D converter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. McConaghy, T., Gielen, G.: Genetic Programming in Industrial Analog CAD: Applications and Challenges. GP Theory and Practice III, pp. 291–306. Springer, Heidelberg (2005)Google Scholar
  2. McConaghy, T., Palmers, P., Gielen, G., Steyaert, M.: Simultaneous multi-topology multi-objective sizing across thousands of analog circuit topologies. In: Proc. DAC, pp. 944–947 (2007)Google Scholar
  3. McConaghy, T., Palmers, P., Gielen, G., Steyaert, M.: Genetic programming with design reuse for industrially scalable, novel circuit design. GP Theory and Practice V, pp. 159–184. Springer, Heidelberg (2007)Google Scholar
  4. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)MATHGoogle Scholar
  5. Whigham, P.A.: Grammatically-based Genetic Programming. In: Proc. Workshop on GP: from Theory to Real-World Applications (1995)Google Scholar
  6. Moore, G.E.: Cramming more components onto integrated circuits. Electronics Mag. 38(8) April 19 (1965)Google Scholar
  7. ITRS: International technology roadmap for semiconductors (last accessed March, 2008),
  8. Mead, C., Conway, L.: Introduction to VLSI Systems. Addison-Wesley, Reading (1980)Google Scholar
  9. Sansen, W.: Analog Design Essentials. Springer, Heidelberg (2006)Google Scholar
  10. Gielen, G., et al.: Analog and digital circuit design in 65 nm cmos: End of the road? In: Proc. DATE, pp. 36–42 (2005)Google Scholar
  11. Johns, D., Martin, K.: Analog Integrated Circuit Design. Wiley, Chichester (1997)Google Scholar
  12. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Journ. Computer and System Sci. 55(1), 119–139 (1997)MATHCrossRefMathSciNetGoogle Scholar
  13. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning. Springer, Heidelberg (2007)Google Scholar
  14. Polikar, R.: Ensemble Based Systems in Decision Making. IEEE CAS Mag. (2006, 3rd quarter)Google Scholar
  15. Friedman, J.H., Popescu, B.E.: Importance sampled learning ensembles. Technical Report, Department of Statistics, Stanford University (2003)Google Scholar
  16. Koza, J.R., et al.: Genetic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer, Dordrecht (2003)MATHGoogle Scholar
  17. Lohn, J.D., Colombano, S.P.: Automated Analog Circuit Synthesis using a Linear Representation. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998. LNCS, vol. 1478, pp. 125–133. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  18. Sripramong, T., Toumazou, C.: The Invention of CMOS Amplifiers Using Genetic Programming and Current-Flow Analysis. IEEE Trans. CAD 21(11), 1237–1252 (2002)Google Scholar
  19. Dastidar, T.R., Chakrabarti, P.P., Ray, P.: A Synthesis System for Analog Circuits Based on Evolutionary Search and Topological Reuse. IEEE Trans. EC 9(2), 211–224 (2005)Google Scholar
  20. Mattiussi, C., Floreano, D.: Analog Genetic Encoding for the Evolution of Circuits and Networks. IEEE Trans. EC 11(5), 596–607 (2007)Google Scholar
  21. Kruiskamp, W., Leenaerts, D.: DARWIN: CMOS Opamp Synthesis by Means of a Genetic Algorithm. In: Proc. DAC, pp. 433–438 (1995)Google Scholar
  22. Maulik, P., Carley, L., Rutenbar, R.A.: Integer Programming Based Topology Selection of Cell Level Analog Circuits. IEEE Trans. CAD 14(4), 401–412 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Peng Gao
    • 1
  • Trent McConaghy
    • 1
    • 2
  • Georges Gielen
    • 1
  1. 1.ESAT-MICASK.U. LeuvenLeuvenBelgium
  2. 2.Solido Design Automation Inc.SaskatoonCanada

Personalised recommendations