A Probabilistic Model for User Relevance Feedback on Image Retrieval

  • Roberto Paredes
  • Thomas Deselaers
  • Enrique Vidal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5237)


We present a novel probabilistic model for user interaction in image retrieval applications which accounts for consistency among the retrieved images and considers the distribution of images in the database which is searched for. Common models for relevance feedback do not consider this and thus do not incorporate all available information. The proposed method is evaluated on two publicly available benchmark databases and clearly outperforms recent competitive methods.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rocchio, J.: Relevance feedback in information retrieval. In: Salton, G. (ed.) The SMART Retrieval System: Experiments in Automatic Document Processing, pp. 313–323. Prentice-Hall, Englewood Cliffs (1971)Google Scholar
  2. 2.
    Zhou, X.S., Huang, T.S.: Relevance feedback in image retrieval: A comprehensive review. Multimedia Systems 8, 536–544 (2003)CrossRefGoogle Scholar
  3. 3.
    Giacinto, G., Rolli, F.: Instance-based relevance feedback for image retrieval. In: Neural Information Processing Systems (NIPS), Vancouver, Canada (December 2004)Google Scholar
  4. 4.
    Setia, L., Ick, J., Burkhardt, H.: Svm-based relevance feedback in image retrieval using invariant feature histograms. In: IAPR Workshop on Machine Vision Applications (MVA), Tsukuba Science City, Japan (May 2005)Google Scholar
  5. 5.
    Vasconcelos, N., Lippman, A.: Bayesian modeling of video editing and structure: Semantic features for video summarization and browsing. In: ICIP, Chicago, IL, USA, pp. 153–157 (1998)Google Scholar
  6. 6.
    Vidal, E., Rodríguez, L., Casacuberta, F., García-Varea, I.: Interactive pattern recognition. In: Popescu-Belis, A., Renals, S., Bourlard, H. (eds.) MLMI 2007. LNCS, vol. 4892, pp. 60–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Duda, R., Hart, P.: Pattern Recognition and Scene Analisys. John Wiley, New York (1973)Google Scholar
  8. 8.
    Rooij, O., Snoek, C.G.M., Worring, M.: Query on demand video browsing. In: ACM Int. Conf. on Multimedia, Augsburg, Germany, pp. 811–814 (2007)Google Scholar
  9. 9.
    Moënne-Loccoz, N., Bruno, E., Marchand-Maillet, S.: Interactive Retrieval of Video Sequences from Local Feature Dynamics. In: Detyniecki, M., Jose, J.M., Nürnberger, A., van Rijsbergen, C.J. (eds.) AMR 2005. LNCS, vol. 3877. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. In: International Conference on Computer Vision 2005, Beijing, China, vol. 2, pp. 1800–1807 (October 2005)Google Scholar
  11. 11.
    Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: An experimental comparison. Information Retrieval (2008) (in press)Google Scholar
  12. 12.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  13. 13.
    Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and effective querying by image content. Journal of Intelligent Information Systems 3(3/4), 231–262 (1994)CrossRefGoogle Scholar
  14. 14.
    Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)CrossRefGoogle Scholar
  15. 15.
    Smith, J.R., Chang, S.F.: Tools and techniques for color image retrieval. In: SPIE Storage and Retrieval for Image and Video Databases, vol. 2670, pp. 426–437 (1996)Google Scholar
  16. 16.
    Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Transaction on Systems, Man, and Cybernetics 8(6), 460–472 (1978)CrossRefGoogle Scholar
  17. 17.
    Müller, H., Müller, W., Marchand-Maillet, S., Squire, D.M.: Strategies for positive and negative relevance feedback in image retrieval. In: Sanfeliu, A., Villanueva, J., Vanrell, M., Alquezar, R., Eklundh, J.-O., Aloimonos, Y. (eds.) Proceedings of the International Conference on Pattern Recognition (ICPR 2000), Barcelona, Spain. Computer Vision and Image Analysis, vol. 1, pp. 1043–1046 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roberto Paredes
    • 1
  • Thomas Deselaers
    • 2
  • Enrique Vidal
    • 1
  1. 1.Pattern Recognition and Human Language Technology GroupUniversidad Politécnica de ValenciaSpain
  2. 2.Human Language Technology and Pattern Recognition Group Computer Science DepartmentRWTH Aachen UniversityAachenGermany

Personalised recommendations