Meta Comments for Summarizing Meeting Speech

  • Gabriel Murray
  • Steve Renals
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5237)


This paper is about the extractive summarization of meeting speech, using the ICSI and AMI corpora. In the first set of experiments we use prosodic, lexical, structural and speaker-related features to select the most informative dialogue acts from each meeting, with the hypothesis being that such a rich mixture of features will yield the best results. In the second part, we present an approach in which the identification of “meta-comments” is used to create more informative summaries that provide an increased level of abstraction. We find that the inclusion of these meta comments improves summarization performance according to several evaluation metrics.


Feature Subset Automatic Speech Recognition Prosodic Feature Summarization System Automatic Summarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carletta, J., Ashby, S., Bourban, S., Flynn, M., Guillemot, M., Hain, T., Kadlec, J., Karaiskos, V., Kraaij, W., Kronenthal, M., Lathoud, G., Lincoln, M., Lisowska, A., McCowan, I., Post, W., Reidsma, D., Wellner, P.: The AMI meeting corpus: A pre-announcement. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS, vol. 3869, pp. 28–39. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, Y.-W., Lin, C.-J.: Combining SVMs with various feature selection strategies. In: Guyon, I., Gunn, S., Nikravesh, M., Zadeh, L. (eds.) Feature extraction, foundations and applications. Springer, Heidelberg (2006)Google Scholar
  3. 3.
    Christensen, H., Gotoh, Y., Renals, S.: A cascaded broadcast news highlighter. IEEE Transactions on Audio, Speech and Language Processing 16, 151–161 (2008)CrossRefGoogle Scholar
  4. 4.
    Dang, H.: Overview of duc 2005. In: Proc. of the Document Understanding Conference (DUC) 2005, Vancouver, BC, Canada (2005)Google Scholar
  5. 5.
    Dielmann, A., Renals, S.: DBN based joint dialogue act recognition of multiparty meetings. In: Proc. of ICASSP 2007, Honolulu, USA, pp. 133–136 (2007)Google Scholar
  6. 6.
    Galley, M.: A skip-chain conditional random field for ranking meeting utterances by importance. In: Proc. of EMNLP 2006, Sydney, Australia, pp. 364–372 (2006)Google Scholar
  7. 7.
    Hain, T., Burget, L., Dines, J., Garau, G., Wan, V., Karafiat, M., Vepa, J., Lincoln, M.: The AMI system for transcription of speech in meetings. In: Proc. of ICASSP 2007, pp. 357–360 (2007)Google Scholar
  8. 8.
    Hori, C., Furui, S.: Speech summarization: An approach through word extraction and a method for evaluation. IEICE Transactions on Information and Systems E87 D(1), 15–25 (2004)Google Scholar
  9. 9.
    Hori, T., Hori, C., Minami, Y.: Speech summarization using weighted finite-state transducers. In: Proc. of Interspeech 2003, Geneva, Switzerland, pp. 2817–2820 (2003)Google Scholar
  10. 10.
    Janin, A., Baron, D., Edwards, J., Ellis, D., Gelbart, D., Morgan, N., Peskin, B., Pfau, T., Shriberg, E., Stolcke, A., Wooters, C.: The ICSI meeting corpus. In: Proc. of IEEE ICASSP 2003, Hong Kong, China, pp. 364–367 (2003)Google Scholar
  11. 11.
    Koumpis, K., Renals, S.: Automatic summarization of voicemail messages using lexical and prosodic features. ACM Transactions on Speech and Language Processing 2, 1–24 (2005)Google Scholar
  12. 12.
    Lin, C.-Y.: Looking for a few good metrics: Automatic summarization evaluation - how many samples are enough. In: Proc. of NTCIR 2004, Tokyo, Japan, pp. 1765–1776 (2004)Google Scholar
  13. 13.
    Lin, C.-Y., Hovy, E.H.: Automatic evaluation of summaries using n-gram co-occurrence statistics. In: Proc. of HLT-NAACL 2003, Edmonton, Calgary, Canada, pp. 71–78 (2003)Google Scholar
  14. 14.
    Maskey, S., Hirschberg, J.: Comparing lexial, acoustic/prosodic, discourse and structural features for speech summarization. In: Proc. of Interspeech 2005, Lisbon, Portugal, pp. 621–624 (2005)Google Scholar
  15. 15.
    Murray, G., Renals, S.: Term-weighting for summarization of multi-party spoken dialogues. In: Popescu-Belis, A., Renals, S., Bourlard, H. (eds.) MLMI 2007. LNCS, vol. 4892, pp. 155–166. Springer, Heidelberg (2008)Google Scholar
  16. 16.
    Murray, G., Renals, S., Carletta, J.: Extractive summarization of meeting recordings. In: Proc. of Interspeech, Lisbon, Portugal, pp. 593–596 (2005)Google Scholar
  17. 17.
    Murray, G., Renals, S., Moore, J., Carletta, J.: Incorporating speaker and discourse features into speech summarization. In: Proc. of the HLT-NAACL 2006, New York City,pp. 367–374 (2006)Google Scholar
  18. 18.
    Reithinger, N., Kipp, M., Engel, R., Alexandersson, J.: Summarizing multilingual spoken negotiation dialogues. In: Proc. of ACL 2000. Association for Computational Linguistics, Hong Kong, pp. 310–317. Morristown, NJ (2000)Google Scholar
  19. 19.
    Valenza, R., Robinson, T., Hickey, M., Tucker, R.: Summarization of spoken audio through information extraction. In: Proc. of the ESCA Workshop on Accessing Information in Spoken Audio, Cambridge, UK, pp. 111–116 (1999)Google Scholar
  20. 20.
    Zechner, K.: Automatic summarization of open-domain multiparty dialogues in diverse genres. Computational Linguistics 28(4), 447–485 (2002)CrossRefGoogle Scholar
  21. 21.
    Zhang, J., Chan, H., Fung, P., Cao, L.: Comparative study on speech summarization of broadcast news and lecture speech. In: Proc. of Interspeech 2007, Antwerp, Belgium, pp. 2781–2784 (2007)Google Scholar
  22. 22.
    Zhu, X., Penn, G.: Summarization of spontaneous conversations. In: Proc. of Interspeech 2006, Pittsburgh, USA, pp. 1531–1534 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gabriel Murray
    • 1
  • Steve Renals
    • 2
  1. 1.University of British ColumbiaVancouverCanada
  2. 2.University of EdinburghEdinburghScotland

Personalised recommendations