Advertisement

Symbolic Classification of General Two-Player Games

  • Stefan Edelkamp
  • Peter Kissmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5243)

Abstract

In this paper we present a new symbolic algorithm for the classification, i. e. the calculation of the rewards for both players in case of optimal play, of two-player games with general rewards according to the Game Description Language. We will show that it classifies all states using a linear number of images concerning the depth of the game graph. We also present an extension that uses this algorithm to create symbolic endgame databases and then performs UCT to find an estimate for the classification of the game.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, M., Grossman, J.P., Nowakowski, R.J., Wolfe, D.: An introduction to clobber. INTEGERS: The Electronic Journal of Combinatorial Number Theory 5(2) (2005)Google Scholar
  2. 2.
    Allis, V.: A knowledge-based approach of connect-four. Master’s thesis, Vrije Universiteit Amsterdam (October 1988)Google Scholar
  3. 3.
    Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)zbMATHCrossRefGoogle Scholar
  4. 4.
    Clune, J.: Heuristic evaluation functions for general game playing. In: AAAI, pp. 1134–1139 (2007)Google Scholar
  5. 5.
    Edelkamp, S., Kissmann, P.: Symbolic exploration for general game playing in PDDL. In: ICAPS-Workshop on Planning in Games (2007)Google Scholar
  6. 6.
    Finnsson, H., Björnsson, Y.: Simulation-based approach to general game playing. In: AAAI, pp. 259–264 (2008)Google Scholar
  7. 7.
    Gelly, S., Wang, Y.: Exploration exploitation in Go: UCT for Monte-Carlo Go. In: NIPS Workshop on On-line Trading of Exploration and Exploitation (2006)Google Scholar
  8. 8.
    Genesereth, M.R., Fikes, R.E.: Knowledge interchange format, version 3.0 reference manual. Technical Report Logic-92-1, Stanford University (1992)Google Scholar
  9. 9.
    Genesereth, M.R., Love, N., Pell, B.: General game playing: Overview of the AAAI competition. AI Magazine 26(2), 62–72 (2005)Google Scholar
  10. 10.
    Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Love, N.C., Hinrichs, T.L., Genesereth, M.R.: General game playing: Game description language specification. Technical Report LG-2006-01, Stanford Logic Group (April 2006)Google Scholar
  12. 12.
    McDermott, D.V.: The 1998 AI planning systems competition. AI Magazine 21(2), 35–55 (2000)Google Scholar
  13. 13.
    Schiffel, S., Thielscher, M.: Fluxplayer: A successful general game player. In: AAAI, pp. 1191–1196 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stefan Edelkamp
    • 1
  • Peter Kissmann
    • 1
  1. 1.Fakultät für InformatikTechnische Universität DortmundDortmundGermany

Personalised recommendations