Abstract

The nuclear shell model predicts that the next doubly magic shell closure beyond 208Pb is at a proton number Z=114, 120, or 126 and at a neutron number N=172 or 184. The outstanding aim of experimental investigations is the exploration of this region of spherical ‘SuperHeavy Elements’ (SHEs). Experimental methods have been developed which allowed for the identification of new elements at production rates of one atom per month. Using cold fusion reactions which are based on lead and bismuth targets, relatively neutron-deficient isotopes of the elements from 107 to 113 were synthesized at GSI in Darmstadt, Germany, and/or at RIKEN in Wako, Japan. In hot fusion reactions of 48Ca projectiles with actinide targets more neutron-rich isotopes of the elements from 112 to 116 and even 118 were produced at the Flerov Laboratory of Nuclear Reactions (FLNR) at the Joint Institute for Nuclear Research (JINR) in Dubna, Russia. Recently, part of these data which represent the first identification of nuclei located on the predicted island of SHEs were confirmed in two independent experiments. The decay data reveal that for the heaviest elements, the dominant decay mode is α emission rather than fission. Decay properties as well as reaction cross-sections are compared with results of theoretical studies. Finally, plans are presented for the further development of the experimental set-up and the application of new techniques. At a higher sensitivity, the detailed exploration of the region of spherical SHEs will be in the center of interest of future experimental work. New data will certainly challenge theoretical studies on the mechanism of the synthesis, on the nuclear decay properties, and on the chemical behavior of these heaviest atoms at the limit of stability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Hahn, F. Straβss mann, Naturwissenschaften 27, 11 (1939)MATHADSGoogle Scholar
  2. 2.
    L. Meitner, O.R. Frisch, Nature 143, 239 (1939)MATHADSGoogle Scholar
  3. 3.
    G. Gamov, Proc. R. Soc. London A 126, 632 (1930)ADSGoogle Scholar
  4. 4.
    C.F. von Weizsäcker, Z. Phys. 96, 431 (1935)MATHADSGoogle Scholar
  5. 5.
    M. Göppert-Mayer, Phys. Rev. 74, 235 (1948)ADSGoogle Scholar
  6. 6.
    O. Haxel et al., Phys. Rev. 75, 1769 (1949)ADSGoogle Scholar
  7. 7.
    H. Grawe, Lect. Notes Phys. 651, 33 (2004)ADSGoogle Scholar
  8. 8.
    W.D. Myers, W.J. Swiatecki, Nucl. Phys. 81, 1 (1966)Google Scholar
  9. 9.
    H. Meldner, Ark. Fys. 36, 593 (1967)Google Scholar
  10. 10.
    S.G. Nilsson et al., Nucl. Phys. A 115, 545 (1968)ADSGoogle Scholar
  11. 11.
    U. Mosel, W. Greiner, Z. Phys. A 222, 261 (1969)Google Scholar
  12. 12.
    J. Grumann et al., Z. Phys. A 228, 371 (1969)Google Scholar
  13. 13.
    E.O. Fiset, J.R. Nix, Nucl. Phys. A 193, 647 (1972)ADSGoogle Scholar
  14. 14.
    J. Randrup et al., Phys. Rev. C 13, 229 (1976)ADSGoogle Scholar
  15. 15.
    W. Grimm et al., Phys. Rev. Lett. 26, 1040 (1971)ADSGoogle Scholar
  16. 16.
    G.N. Flerov, G.M. Ter-Akopian, Rep. Prog. Phys. 46, 817 (1983)ADSGoogle Scholar
  17. 17.
    G. Münzenberg et al., Nucl. Instr. Meth. 161, 65 (1979)Google Scholar
  18. 18.
    S. Hofmann et al., Z. Phys. A 291, 53 (1979)ADSGoogle Scholar
  19. 19.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000)ADSGoogle Scholar
  20. 20.
    K.H. Schmidt, et al., Phys. Lett. B 168, 39 (1986)ADSGoogle Scholar
  21. 21.
    N. Angert et al., GSI Report 89-1, 372 (1989)Google Scholar
  22. 22.
    R. Geller et al., Rev. Sci. Instrum. 63, 2795 (1992)ADSGoogle Scholar
  23. 23.
    J. Bossler et al., GSI Rep. 97-1, 155 (1997)Google Scholar
  24. 24.
    R. Mann et al., GSI Report 2006-1, Scientific Report 2005, 198 (2006)Google Scholar
  25. 25.
    B. Lommel et al., Nucl. Instr. Meth. A 561, 100 (2006)ADSGoogle Scholar
  26. 26.
    B. Kindler et al., Nucl. Inst. Meth. A 590, 126 (2008)ADSGoogle Scholar
  27. 27.
    E. Kashy, B. Sherrill, Nucl. Instr. Meth. B 26, 610 (1987)ADSGoogle Scholar
  28. 28.
    R. Mann et al., GSI Report 2004-1, Scientific Report 2003, 224 (2004)Google Scholar
  29. 29.
    H. Folger et al., Nucl. Instr. Meth. A 362, 64 (1995)ADSGoogle Scholar
  30. 30.
    S. Saro et al., Nucl. Instr. Meth. A 381, 520 (1996)ADSGoogle Scholar
  31. 31.
    P. Armbruster et al., Nucl. Instr. Meth. 91, 499 (1971)Google Scholar
  32. 32.
    S. Hofmann et al., Nucl. Instr. Meth. 223, 312, 1984Google Scholar
  33. 33.
    G. Münzenberg, Rep. Prog. Phys. 51, 57 (1988)ADSGoogle Scholar
  34. 34.
    S. Hofmann, J. Alloys Compd. 213/214, 74 (1994)ADSGoogle Scholar
  35. 35.
    J. Hoffmann et al., GSI Report 2005-1, Scientific Report 2004, 340 (2005)Google Scholar
  36. 36.
    A. Ghiorso et al., Phys. Rev. Lett. 22, 1317 (1969)ADSGoogle Scholar
  37. 37.
    S. Hofmann, Rep. Prog. Phys. 61, 639 (1998)ADSGoogle Scholar
  38. 38.
    K. Morita et al., Eur. Phys. J. A 21, 257 (2004)ADSGoogle Scholar
  39. 39.
    K. Morita et al., J. Phys. Soc. Jpn. 73, 1738 (2004)ADSGoogle Scholar
  40. 40.
    K. Morita et al., J. Phys. Soc. Jpn. 76, 043201 (2007)ADSGoogle Scholar
  41. 41.
    K. Morita et al., J. Phys. Soc. Jpn. 73, 2593 (2004)ADSGoogle Scholar
  42. 42.
    K. Morita et al., J. Phys. Soc. Jpn. 76, 045001 (2007)ADSGoogle Scholar
  43. 43.
    M. Schädel, J. Nucl. Radiochem. Sci. 3, 113 (2002)Google Scholar
  44. 44.
    J. Corish, G.M. Rosenblatt, Pure Appl. Chem., 76, 2101 (2004)Google Scholar
  45. 45.
    G. Münzenberg et al., Z. Phys. A 300, 107 (1981)ADSGoogle Scholar
  46. 46.
    G. Münzenberg et al., Z. Phys. A 333, 163 (1989)ADSGoogle Scholar
  47. 47.
    S. Hofmann et al., Z. Phys. A 358, 377 (1997)ADSGoogle Scholar
  48. 48.
    S. Hofmann et al., Z. Phys. A 350, 281 (1995)ADSGoogle Scholar
  49. 49.
    S. Hofmann et al., Eur. Phys. J. A 14, 147 (2002)ADSGoogle Scholar
  50. 50.
    P.A. Wilk et al., Phys. Rev Lett. 85, 2697 (2000)ADSGoogle Scholar
  51. 51.
    R. Eichler et al., Nature 407, 63 (2000)ADSGoogle Scholar
  52. 52.
    Z.G. Gan et al., Eur. Phys. J. A 20, 385 (2004)ADSMathSciNetGoogle Scholar
  53. 53.
    Z.G. Gan et al., Eur. Phys. J. A 10, 21 (2001)ADSGoogle Scholar
  54. 54.
    C.M. Folden III et al., Phys. Rev. C 73, 014611 (2006)ADSGoogle Scholar
  55. 55.
    S.L. Nelson et al., Phys. Rev. Lett. 100, 022501 (2008)ADSGoogle Scholar
  56. 56.
    G. Münzenberg et al., Z. Phys. A 317, 235 (1984)Google Scholar
  57. 57.
    G. Münzenberg et al., Z. Phys. A 324, 489 (1986)ADSGoogle Scholar
  58. 58.
    S. Hofmann et al., Z. Phys. A 350, 277 (1995)ADSGoogle Scholar
  59. 59.
    S. Hofmann et al., Z. Phys. A 354, 229 (1996)ADSGoogle Scholar
  60. 60.
    Ch.E. Düllmann et al., Nature 418, 859 (2002)ADSGoogle Scholar
  61. 61.
    A. Türler et al., Eur. Phys. J. A 17, 505 (2003)ADSGoogle Scholar
  62. 62.
    G. Münzenberg et al., Z. Phys. A 309, 89 (1982)ADSGoogle Scholar
  63. 63.
    G. Münzenberg et al., Z. Phys. A 315, 145 (1984)ADSGoogle Scholar
  64. 64.
    G. Münzenberg et al., Z. Phys. A 330, 435 (1988)ADSGoogle Scholar
  65. 65.
    S. Bjørnholm, W.J. Swiatecki, Nucl. Phys. A 391, 471 (1982)ADSGoogle Scholar
  66. 66.
    P. Fröbrich, Phys. Lett. B 215, 36 (1988)ADSGoogle Scholar
  67. 67.
    Yu.A. Lazarev et al., Phys. Rev. Lett. 75, 1903 (1995)ADSGoogle Scholar
  68. 68.
    A. Ghiorso et al., Phys. Rev. Lett. 33, 1490 (1974)ADSGoogle Scholar
  69. 69.
    M.R. Schmorak, Nuclear Data Sheets 59, 507 (1990)ADSGoogle Scholar
  70. 70.
    K.H. Schmidt et al., Z. Phys. A 316, 19 (1984)ADSGoogle Scholar
  71. 71.
    S. Cwiok et al., Nucl. Phys. A 573, 356 (1994)ADSGoogle Scholar
  72. 72.
    T.N. Ginter et al., Phys. Rev. C 67, 064609, 2003ADSGoogle Scholar
  73. 73.
    C.M. Folden III et al., Phys. Rev. Lett. 93, 212702 (2004)ADSGoogle Scholar
  74. 74.
    A. Ghiorso et al., Phys. Rev. C 51, R2293 (1995)ADSGoogle Scholar
  75. 75.
    Yu.A. Lazarev et al., Phys. Rev. C 54, 620 (1996)ADSGoogle Scholar
  76. 76.
    S. Hofmann et al., Eur. Phys. J. A 10, 5 (2001)ADSGoogle Scholar
  77. 77.
    S. Cwiok et al., Phys. Rev. Lett. 83, 1108 (1999)ADSGoogle Scholar
  78. 78.
    I. Muntian et al., Phys. Ref. C 60, 041302 (1999)ADSGoogle Scholar
  79. 79.
    R. Smolanczuk, Phys. Rev. Lett. 83, 4705 (1999)ADSGoogle Scholar
  80. 80.
    R. Smolanczuk et al., Phys. Rev. C 52, 1871 (1995)ADSGoogle Scholar
  81. 81.
    D.C. Hoffman, Nucl. Phys. A 502, 21c (1989)ADSGoogle Scholar
  82. 82.
    S. Hofmann et al., GSI Report 2004-1, Scientific Report 2003, 1 (2004)Google Scholar
  83. 83.
    V. Ninov et al., Phys. Rev. Lett. 83, 1104 (1999)ADSGoogle Scholar
  84. 84.
    C. Stodel et al., Proceedings of the Tours Symposium on Nuclear Physics IV, edited by M. Arnould et al., AIP Conference Proceedings 561 (AIP, New York, 2001) p. 344.Google Scholar
  85. 85.
    K. Morimoto et al., Proceedings of the Tours Symposium on Nuclear Physics IV, edited by M. Arnould et al., AIP Conference Proceedings 561 (AIP, New York, 2001) p. 354.Google Scholar
  86. 86.
    V. Ninov et al., Phys. Rev. Lett. 89, 039901 (2002)ADSGoogle Scholar
  87. 87.
    V.B. Kutner et al., Proceedings of the 15th International Conference on Cyclotrons and their Applications, edited by E. Baron and M. Lieuvin (IOP, Bristol, 1998), p. 405Google Scholar
  88. 88.
    Yu.Ts. Oganessian, J. Phys. G, Nucl. Part. Phys. 34, R165 (2007)ADSGoogle Scholar
  89. 89.
    A.V. Yeremin et al., Nucl. Instr. Meth. A 350, 608 (1994)ADSGoogle Scholar
  90. 90.
    A.V. Yeremin et al., Nucl. Instr. Meth. B 126, 329 (1997)ADSGoogle Scholar
  91. 91.
    Yu.A. Lazarev et al., Proceedings of the International School Seminar on Heavy Ion Physics, edited by Yu.Ts. Oganessian et al.. (Joint Institute for Nuclear Research, Dubna, 1993), Vol. II, p. 497Google Scholar
  92. 92.
    Yu.Ts. Oganessian et al., Eur. Phys. J. A 5, 63 (1999)ADSGoogle Scholar
  93. 93.
    Yu.Ts. Oganessian et al., Nature 400, 242 (1999)ADSGoogle Scholar
  94. 94.
    Yu.Ts. Oganessian et al., Phys. Rev. Lett. 83, 3154 (1999)ADSGoogle Scholar
  95. 95.
    Yu.Ts. Oganessian et al., Phys. Rev. C 62, 041604 (2000)ADSGoogle Scholar
  96. 96.
    Yu.Ts. Oganessian et al., Phys. Rev. C 63, 011301 (2000)ADSGoogle Scholar
  97. 97.
    Yu.Ts. Oganessian et al., Phys. At. Nucl. 64, 1349 (2001)Google Scholar
  98. 98.
    Yu.Ts. Oganessian et al., Preprint JINR E7-2002-287Google Scholar
  99. 99.
    Yu.Ts. Oganessian et al., Nucl. Phys. A 734, 109 (2004)Google Scholar
  100. 100.
    Yu.Ts. Oganessian et al., Phys. Rev. C 69, 054607 (2004)Google Scholar
  101. 101.
    Yu.Ts. Oganessian et al., Phys. Rev. C 70, 064609 (2004)Google Scholar
  102. 102.
    I.V. Zagrebaev et al., Phys. At. Nucl. 66, 1033 (2003)Google Scholar
  103. 103.
    V.I. Zagrebaev, Nucl. Phys. A 734, 164 (2004)ADSGoogle Scholar
  104. 104.
    Yu.Ts. Oganessian et al., Phys. Rev. C 69, 021601 (2004)ADSGoogle Scholar
  105. 105.
    Yu.Ts. Oganessian et al., Phys. Rev. C 72, 034611 (2005)ADSGoogle Scholar
  106. 106.
    S.N. Dmitriev et al., Int. Symp. on Exotic Nuclei, Edts. Yu.E. Penionzhkevich and E.A. Cherepanov, Peterhof, Russia, July 5–12, 2004, World Scientific Publishing, Singapore, 2005, p. 285Google Scholar
  107. 107.
    D. Schumann et al., Radiochim. Acta 93, 727 (2005)Google Scholar
  108. 108.
    Yu.Ts. Oganessian et al., Phys. Rev. C 74, 044602 (2006)ADSGoogle Scholar
  109. 109.
    Yu.Ts. Oganessian et al., Phys. Rev. C 76, 11601(R) (2007)ADSGoogle Scholar
  110. 110.
    W. Loveland et al., Phys. Rev. C 66, 044617 (2002)ADSGoogle Scholar
  111. 111.
    A.B. Yakushev et al., Rad. Chem. Acta 91, 433 (2003)Google Scholar
  112. 112.
    K.E. Gregorich et al., Phys. Rev. C 72, 014605 (2005)ADSGoogle Scholar
  113. 113.
    R. Eichler et al., Radiochim. Acta 94,181 (2006)MathSciNetGoogle Scholar
  114. 114.
    R. Eichler et al., Nucl. Phys. A 787, 373c (2007)ADSGoogle Scholar
  115. 115.
    R. Eichler et al., Nature 447, 72 (2007)ADSGoogle Scholar
  116. 116.
    S. Hofmann et al., Eur. Phys. J. A 32, 251 (2007)ADSGoogle Scholar
  117. 117.
    Yu.Ts. Oganessian et al., Nucl. Phys. A 734, 196 (2004)ADSGoogle Scholar
  118. 118.
    B. Kadkhodayan et al., Radiochim. Acta 72, 169 (1996)Google Scholar
  119. 119.
    J.V. Kratz et al., Phys. Rev. C 45, 1064 (1992)ADSGoogle Scholar
  120. 120.
    A. Türler et al., Phys. Rev. C 57, 1648 (1998)ADSGoogle Scholar
  121. 121.
    G.T. Seaborg W.D. Loveland, The elements beyond uranium (John Wiley and Sons, Inc., New York, 1990)Google Scholar
  122. 122.
    J.V. Kratz, Chemsitry of Transactinides’, in Handbook of Nuclear Chemsitry, Vol. 2. ed. by A. Vertes, S. Nagy, and Z. Klencsar (Kluwer Academic Publishers, Dordrecht, 2003) pp. 323–395Google Scholar
  123. 123.
    M. Schädel, The Chemistry of Superheavy Elements. (Kluwer Academic Publishers, Dordrecht 2003)Google Scholar
  124. 124.
    R. Smolanczuk, A. Sobiczewski, Proceedings of the XV. Nuclear Physics Divisional Conference on Low Energy Nuclear Dynamics, ed. by Yu.Ts. Oganessian et al.. (World Scientific, Singapore, 1995), p. 313.Google Scholar
  125. 125.
    S. Cwiok et al., Nucl. Phys. A 611, 211 (1996)ADSGoogle Scholar
  126. 126.
    K. Rutz et al., Phys. Rev. C 56, 238 (1997)ADSGoogle Scholar
  127. 127.
    A.T. Kruppa et al., Phys. Rev. C 61, 034313 (2000)ADSGoogle Scholar
  128. 128.
    M. Bender et al., Phys. Lett. B 515, 42 (2001)ADSGoogle Scholar
  129. 129.
    M. Bender et al., Nucl. Phys. A 723, 354 (2003)ADSGoogle Scholar
  130. 130.
    W.J. Swiatecki et al., Acta Phys. Pol. B 38, 1565 (2007)ADSGoogle Scholar
  131. 131.
    P. Möller et al., At. Data Nucl. Data Tables 66, 131 (1997)ADSGoogle Scholar
  132. 132.
    P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995)ADSGoogle Scholar
  133. 133.
    I. Muntian et al., Acta Phys. Pol. B 32, 691 (2001)ADSGoogle Scholar
  134. 134.
    P. Reiter et al., Phys. Rev. Lett. 82, 509 (1999)ADSGoogle Scholar
  135. 135.
    M. Leino et al., Acta Phys. Pol. B 30, 635 (1999)ADSGoogle Scholar
  136. 136.
    G.A. Lalazissis et al., Nucl. Phys. A 608, 202 (1996)ADSGoogle Scholar
  137. 137.
    Z. Patyk, A. Sobiczewski, Nucl. Phys. A 533, 132 (1991)ADSGoogle Scholar
  138. 138.
    I. Muntian et al., Phys. Lett. A 500, 241 (2001)Google Scholar
  139. 139.
    A. Sobiczewski et al., Phys. At. Nucl. 64, 1105 (2001)Google Scholar
  140. 140.
    R.-D. Herzberg, J. Phys. G, Nucl. Part. Phys., 30, R123 (2004)ADSGoogle Scholar
  141. 141.
    A. Ghiorso et al., Phys. Rev. C 7, 2032 (1973)ADSGoogle Scholar
  142. 142.
    F.R. Xu et al., Phys. Rev. Lett. 92, 252501 (2004)ADSGoogle Scholar
  143. 143.
    J.-P. Delaroche et al., Nucl. Phys. A 771, 103 (2006)ADSGoogle Scholar
  144. 144.
    S. Eeckhaudt et al., Eur. Phys. J. A 26, 227 (2005)ADSGoogle Scholar
  145. 145.
    C.N. Davids et al., Phys. Rev. C 74, 014316 (2006)ADSGoogle Scholar
  146. 146.
    S.K. Tandel et al., Phys. Rev. Lett. 97, 082502 (2006)ADSGoogle Scholar
  147. 147.
    R.-D. Herzberg et al., Nature 442, 896 (2006)ADSGoogle Scholar
  148. 148.
    B. Sulignano et al., Eur. Phys. J. A 33, 327 (2007)ADSGoogle Scholar
  149. 149.
    P. Armbruster et al., Phys. Rev. Lett. 54, 406 (1985)ADSGoogle Scholar
  150. 150.
    W. Reisdorf, M. Schädel, Z. Phys. A 343, 47 (1992)ADSGoogle Scholar
  151. 151.
    M. Schädel, S. Hofmann, J. Radioanal. Nucl. Chem. 203, 283 (1996)Google Scholar
  152. 152.
    W.J. Swiatecki et al., Phys. Rev. C 71, 014602 (2005)ADSGoogle Scholar
  153. 153.
    V.I. Zagrebaev, Phys. Rev. C 64, 034606 (2001)ADSGoogle Scholar
  154. 154.
    V.I. Zagrebaev et al., Phys. Rev. C 65, 014607 (2002)ADSGoogle Scholar
  155. 155.
    I. Muntian et al., Acta Phys. Pol. B 34, 2141 (2003)ADSGoogle Scholar
  156. 156.
    R. Bass, Nucl. Phys. A 231, 45 (1974)ADSGoogle Scholar
  157. 157.
    W. von Oertzen, Z. Phys. A 342, 177 (1992)ADSGoogle Scholar
  158. 158.
    V.V. Volkov, Phys. Part. Nuclei 35, 425 (2004)Google Scholar
  159. 159.
    S. Hofmann, ’Production and stability of new elements’. In, Proceedings of the XV. Nuclear Physics Divisional Conference on Low Energy Nuclear Dynamics, St.Petersburg, Russia, April 18–22, 1995, ed. by Yu.Ts. Oganessian, R. Kalpakchieva, and W. von Oertzen. (World Scientific, Singapore 1995) pp. 305–312Google Scholar
  160. 160.
    S. Hofmann, Prog. Part. Nucl. Phys. 46, 293 (2001)ADSGoogle Scholar
  161. 161.
    G.G. Adamian et al., Nucl. Phys. A 678, 24 (2000)ADSGoogle Scholar
  162. 162.
    G.G. Adamian et al., Phys. Rev. C 69, 11601 (2004)ADSGoogle Scholar
  163. 163.
    G.G. Adamian et al., Phys. Rev. C 69, 14607 (2004)ADSGoogle Scholar
  164. 164.
    G.G. Adamian et al., Phys. Rev. C 69, 44601 (2004)ADSGoogle Scholar
  165. 165.
    W. Loveland et al., Phys. Rev. C 74, 44607 (2006)ADSGoogle Scholar
  166. 166.
    W. Loveland, Phys. Rev. C 76, 14612 (2007)ADSGoogle Scholar
  167. 167.
    J.F. Liang et al., Phys. Rev. C 75, 54607 (2000)Google Scholar
  168. 168.
    V.Yu. Denisov, S. Hofmann, Phys. Rev. C 61, 034606 (2000)ADSGoogle Scholar
  169. 169.
    M.G. Itkis et al., Phys. Rev. C 65, 044602 (2002)ADSGoogle Scholar
  170. 170.
    J. Maruhn, W. Greiner, Z. Phys. A 251, 431 (1972)Google Scholar
  171. 171.
    A. Sandulescu et al., Phys. Lett. B 60, 225 (1976)ADSGoogle Scholar
  172. 172.
    R.K. Gupta et al., Z. Phys. A 283, 217 (1977)ADSGoogle Scholar
  173. 173.
    D. Scharnweber et al., Phys. Rev. Lett. 24, 601 (1970)ADSGoogle Scholar
  174. 174.
    U. Mosel et al., Phys. Lett. B 34, 587 (1971)ADSGoogle Scholar
  175. 175.
    A. Sandulescu, W. Greiner, Rep. Prog. Phys. 55, 1423 (1992)ADSGoogle Scholar
  176. 176.
    A. Sandulescu et al., Int. J. Mod. Phys. E 1, 379 (1992)ADSGoogle Scholar
  177. 177.
    K. Nishio et al., Eur. Phys. J. A 29, 281 (2006)ADSGoogle Scholar
  178. 178.
    V.Yu. Denisov, W. Nörenberg, Eur. Phys. J. A 15, 375 (2002)ADSGoogle Scholar
  179. 179.
    Y. Aritomo et al., Phys. Rev. C 59, 796 (1999)ADSGoogle Scholar
  180. 180.
    G. Giardina et al., Eur. Phys. J. A 8, 205 (2000)ADSGoogle Scholar
  181. 181.
    R. Smolanczuk, Phys. Rev. C 63, 044607 (2001)ADSGoogle Scholar
  182. 182.
    G. Fazio et al., Eur. Phys. J. A 20, 89 (2004)ADSGoogle Scholar
  183. 183.
    G. Fazio et al., Mod. Phys. Lett. A 20, 391 (2005)ADSGoogle Scholar
  184. 184.
    G.G. Adamian et al., Phys. Rev. C 71, 34603 (2005)ADSGoogle Scholar
  185. 185.
    G.G. Adamian, N.V. Antonenko, Phys. Rev. C 72, 64617 (2005)ADSGoogle Scholar
  186. 186.
    T. Ichikawa et al., Phys. Rev. C 71, 44608 (2005)ADSGoogle Scholar
  187. 187.
    V.Yu. Denisov, N.A. Pilipenko, Phys. Rev. C 76, 14602 (2007)ADSGoogle Scholar
  188. 188.
    I.V. Zagrebaev, W. Greiner, J. Phys. G 31, 825 (2005)ADSGoogle Scholar
  189. 189.
    V.I. Zagrebaev et al., Phys. Rev. C 73, 31602(R) (2006)ADSGoogle Scholar
  190. 190.
    P. Reiter et al., Phys. Rev. Lett. 84, 3542 (2000)ADSGoogle Scholar
  191. 191.
    R.-D. Herzberg et al., Phys. Rev. C 65, 014303 (2001)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Hofmann
    • 1
    • 2
  1. 1.Gesellschaft für Schwerionenforschung (GSI)Germany
  2. 2.Institut für Kernphysik Goethe-UniversitätGermany

Personalised recommendations