Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering

  • Jonathan Gemmell
  • Andriy Shepitsen
  • Bamshad Mobasher
  • Robin Burke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5182)


The popularity of collaborative tagging, otherwise known as “folksonomies”, emanate from the flexibility they afford users in navigating large information spaces for resources, tags, or other users, unencumbered by a pre-defined navigational or conceptual hierarchy. Despite its advantages, social tagging also increases user overhead in search and navigation: users are free to apply any tag they wish to a resource, often resulting in a large number of tags that are redundant, ambiguous, or idiosyncratic. Data mining techniques such as clustering provide a means to overcome this problem by learning aggregate user models, and thus reducing noise. In this paper we propose a method to personalize search and navigation based on unsupervised hierarchical agglomerative tag clustering. Given a user profile, represented as a vector of tags, the learned tag clusters provide the nexus between the user and those resources that correspond more closely to the user’s intent. We validate this assertion through extensive evaluation of the proposed algorithm using data from a real collaborative tagging Web site.


collaborative tagging hierarchical clustering personalization 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Optimizing web search using social annotations. In: Proceedings of the 16th international conference on World Wide Web, pp. 501–510 (2007)Google Scholar
  2. 2.
    Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Improving search and exploration in the tag space. In: Proceedings of the Collaborative Web Tagging Workshop at WWW, vol. 6 (2006)Google Scholar
  3. 3.
    Choy, S., Lui, A.: Web Information Retrieval in Collaborative Tagging Systems. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence, pp. 352–355 (2006)Google Scholar
  4. 4.
    Gower, J., Ross, G.: Minimum Spanning Trees and Single Linkage Cluster Analysis. Applied Statistics 18(1), 54–64 (1969)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Hammond, T., Hannay, T., Lund, B., Scott, J.: Social Bookmarking Tools (I). D-Lib Magazine 11(4), 1082–9873 (2005)CrossRefGoogle Scholar
  6. 6.
    Heymann, P., Garcia-Molina, H.: Collaborative Creation of Communal Hierarchical Taxonomies in Social Tagging Systems. Technical report, Technical Report 2006-10, Computer Science Department (April 2006)Google Scholar
  7. 7.
    Hotho, A., Jaschke, R., Schmitz, C., Stumme, G.: Information retrieval in folksonomies: Search and ranking. The Semantic Web: Research and Applications 4011, 411–426 (2006)CrossRefGoogle Scholar
  8. 8.
    Mathes, A.: Folksonomies-Cooperative Classification and Communication Through Shared Metadata. Computer Mediated Communication (Doctoral Seminar), Graduate School of Library and Information Science, University of Illinois Urbana-Champaign (December 2004)Google Scholar
  9. 9.
    Mika, P.: Ontologies are us: A unified model of social networks and semantics. Web Semantics: Science, Services and Agents on the World Wide Web 5(1), 5–15 (2007)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Millen, D., Feinberg, J., Kerr, B.: Dogear: Social bookmarking in the enterprise. In: Proceedings of the Special Interest Group on Computer-Human Interaction conference on Human Factors in computing systems, pp. 111–120 (2006)Google Scholar
  11. 11.
    Niwa, S., Doi, T., Honiden, S.: Web Page Recommender System based on Folksonomy Mining for ITNG 2006 Submissions. In: Proceedings of the Third International Conference on Information Technology: New Generations, pp. 388–393 (2006)Google Scholar
  12. 12.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management: an International Journal 24(5), 513–523 (1988)CrossRefGoogle Scholar
  13. 13.
    Salton, G., Wong, A., Yang, C.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1975)zbMATHCrossRefGoogle Scholar
  14. 14.
    Van Rijsbergen, C.: Information Retrieval, Butterworth-Heinemann Newton, MA, USA (1979)Google Scholar
  15. 15.
    Voorhees, E.: The Text Retrieval Conference-8 Question Answering Track Report. Proceedings of TREC 8, 77–82 (1999)Google Scholar
  16. 16.
    Wu, X., Zhang, L., Yu, Y.: Exploring social annotations for the semantic web. In: Proceedings of the 15th international conference on World Wide Web, pp. 417–426 (May 2006)Google Scholar
  17. 17.
    Xu, Z., Fu, Y., Mao, J., Su, D.: Towards the semantic web: Collaborative tag suggestions. In: Collaborative Web Tagging Workshop at WWW 2006, Edinburgh, Scotland (May 2006)Google Scholar
  18. 18.
    Yan, R., Natsev, A., Campbell, M.: An efficient manual image annotation approach based on tagging and browsing. In: Workshop on multimedia information retrieval on The many faces of multimedia semantics, pp. 13–20 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jonathan Gemmell
    • 1
  • Andriy Shepitsen
    • 1
  • Bamshad Mobasher
    • 1
  • Robin Burke
    • 1
  1. 1.Center for Web Intelligence School of ComputingDePaul UniversityChicago, IllinoisUSA

Personalised recommendations