An Analysis and a Reproof of Hmelevskii’s Theorem

(Extended Abstract)
  • Juhani Karhumäki
  • Aleksi Saarela
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5257)

Abstract

We analyze and reprove the famous theorem of Hmelevskii, which states that the general solutions of constant-free equations on three unknowns are finitely parameterizable, that is expressible by a finite collection of formulas of word and numerical parameters. The proof is written, and simplified, by using modern tools of combinatorics on words. As a new aspect the size of the finite representation is estimated; it is bounded by a double exponential function on the size of the equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albert, M.H., Lawrence, J.: A proof of Ehrenfeucht’s Conjecture. Theoret. Comput. Sci. 41, 121–123 (1985)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Choffrut, C., Karhumäki, J.: Combinatorics of words. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Czeizler, E., Karhumäki, J.: On non-periodic solutions of independent systems of word equations over three unknowns. Internat. J. Found. Comput. Sci. 18, 873–897 (2007)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Guba, V.S.: Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems. Mat. Zametki 40, 321–324 (1986)MATHMathSciNetGoogle Scholar
  5. 5.
    Harju, T., Karhumäki, J., Plandowski, W.: Independent system of equations. In: Lothaire, M. (ed.) Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)Google Scholar
  6. 6.
    Hmelevskii, Y.I.: Equations in free semigroups. Proc. Steklov Inst. of Math. 107 (1971); Amer. Math. Soc. Translations (1976)Google Scholar
  7. 7.
    Karhumäki, J., Saarela, A.: A Reproof of Hmelevskii’s Theorem (manuscript)Google Scholar
  8. 8.
    Lothaire, M.: Combinatorics on Words. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  9. 9.
    Makanin, G.S.: The problem of solvability of equations in a free semigroup. Mat. Sb. 103, 147–236 (1977); English transl. in Math. USSR Sb. 32, 129–198MathSciNetGoogle Scholar
  10. 10.
    Plandowski, W.: Satisfiability of word equations with constants is in PSPACE. J. ACM 51, 483–496 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Spehner, J.-C.: Quelques Problemes d’extension, de conjugaison et de presentation des sous-monoides d’un monoide libre. Ph.D. Thesis, Univ. Paris (1976)Google Scholar
  12. 12.
    Spehner, J.-C.: Les presentations des sous-monoides de rang 3 d’un monoide libre. In: Semigroups, Proc. Conf. Math. Res. Inst., pp. 116–155 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Juhani Karhumäki
    • 1
  • Aleksi Saarela
    • 1
  1. 1.Department of Mathematics and Turku Centre for Computer Science TUCSUniversity of TurkuTurkuFinland

Personalised recommendations