Advertisement

Bad News on Decision Problems for Patterns

  • Dominik D. Freydenberger
  • Daniel Reidenbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5257)

Abstract

We study the inclusion problem for pattern languages, which is shown to be undecidable by Jiang et al. (J. Comput. System Sci. 50, 1995). More precisely, Jiang et al. demonstrate that there is no effective procedure deciding the inclusion for the class of all pattern languages over all alphabets. Most applications of pattern languages, however, consider classes over fixed alphabets, and therefore it is practically more relevant to ask for the existence of alphabet-specific decision procedures. Our first main result states that, for all but very particular cases, this version of the inclusion problem is also undecidable. The second main part of our paper disproves the prevalent conjecture on the inclusion of so-called similar E-pattern languages, and it explains the devastating consequences of this result for the intensive previous research on the most prominent open decision problem for pattern languages, namely the equivalence problem for general E-pattern languages.

Keywords

Inductive Inference Equivalence Problem Inclusion Problem Pattern Language Alphabet Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angluin, D.: Finding patterns common to a set of strings. Journal of Computer and System Sciences 21, 46–62 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Angluin, D.: Inductive inference of formal languages from positive data. Information and Control 45, 117–135 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Câmpeanu, C., Salomaa, K., Yu, S.: A formal study of practical regular expressions. Int. J. Found. Comput. Sci. 14, 1007–1018 (2003)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dányi, G., Fülöp, Z.: A note on the equivalence problem of E-patterns. Information Processing Letters 57, 125–128 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Filè, G.: The relation of two patterns with comparable language. In: Proc. STACS 1988. LNCS, vol. 294, pp. 184–192. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  6. 6.
    Freydenberger, D.D., Reidenbach, D., Schneider, J.C.: Unambiguous morphic images of strings. Int. J. Found. Comput. Sci. 17, 601–628 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ibarra, O.: Reversal-bounded multicounter machines and their decision problems. Journal of the ACM 25, 116–133 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Jiang, T., Kinber, E., Salomaa, A., Salomaa, K., Yu, S.: Pattern languages with and without erasing. Int. J. Comput. Math. 50, 147–163 (1994)zbMATHCrossRefGoogle Scholar
  9. 9.
    Jiang, T., Salomaa, A., Salomaa, K., Yu, S.: Decision problems for patterns. Journal of Computer and System Sciences 50, 53–63 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Karhumäki, J., Mignosi, F., Plandowski, W.: The expressibility of languages and relations by word equations. Journal of the ACM 47, 483–505 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Luo, W.: Compute inclusion depth of a pattern. In: Auer, P., Meir, R. (eds.) COLT 2005. LNCS (LNAI), vol. 3559, pp. 689–690. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Mateescu, A., Salomaa, A.: Finite degrees of ambiguity in pattern languages. RAIRO Informatique théoretique et Applications 28, 233–253 (1994)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Mateescu, A., Salomaa, A.: Patterns. In: [22], pp. 230–242 (1997)Google Scholar
  14. 14.
    Minsky, M.: Recursive unsolvability of Post’s problem of “Tag” and other topics in the theory of turing machines. Ann. of Math. 74, 437–455 (1961)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Mukouchi, Y.: Characterization of pattern languages. In: Proc. 2nd International Workshop on Algorithmic Learning Theory, ALT 1991, pp. 93–104 (1991)Google Scholar
  16. 16.
    Ng, Y.K., Shinohara, T.: Developments from enquiries into the learnability of the pattern languages from positive data. Theor. Comp. Sci. 397, 150–165 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ohlebusch, E., Ukkonen, E.: On the equivalence problem for E-pattern languages. Theor. Comput. Sci. 186, 231–248 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Reidenbach, D.: The Ambiguity of Morphisms in Free Monoids and its Impact on Algorithmic Properties of Pattern Languages. Logos Verlag, Berlin (2006)Google Scholar
  19. 19.
    Reidenbach, D.: A non-learnable class of E-pattern languages. Theor. Comput. Sci. 350, 91–102 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Reidenbach, D.: An examination of Ohlebusch and Ukkonen’s conjecture on the equivalence problem for E-pattern languages. Journal of Automata, Languages and Combinatorics 12, 407–426 (2007)zbMATHGoogle Scholar
  21. 21.
    Reidenbach, D.: Discontinuities in pattern inference. Theor. Comput. Sci. 397, 166–193 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Rozenberg, G., Salomaa, A.: Handbook of Formal Languages, vol. 1. Springer, Berlin (1997)zbMATHGoogle Scholar
  23. 23.
    Salomaa, K.: Patterns. In: Martin-Vide, C., Mitrana, V., Păun, G. (eds.) Formal Languages and Applications. Studies in Fuzziness and Soft Computing, vol. 148, pp. 367–379. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Salomaa, K.: Patterns. Lecture, 5th PhD School in Formal Languages and Applications, URV Tarragona (2006)Google Scholar
  25. 25.
    Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Proc. RIMS Symposia on Software Sci. Eng. LNCS, vol. 147, pp. 115–127. Springer, Heidelberg (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dominik D. Freydenberger
    • 1
  • Daniel Reidenbach
    • 2
  1. 1.Institut für InformatikGoethe-UniversitätFrankfurt am MainGermany
  2. 2.Department of Computer ScienceLoughborough UniversityLoughboroughUnited Kingdom

Personalised recommendations