Tree Automata with Global Constraints

  • Emmanuel Filiot
  • Jean-Marc Talbot
  • Sophie Tison
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5257)


A tree automaton with global tree equality and disequality constraints, TAGED for short, is an automaton on trees which allows to test (dis)equalities between subtrees which may be arbitrarily faraway. In particular, it is equipped with an (dis)equality relation on states, so that whenever two subtrees t and t′ evaluate (in an accepting run) to two states which are in the (dis)equality relation, they must be (dis)equal. We study several properties of TAGEDs, and prove decidability of emptiness of several classes. We give two applications of TAGEDs: decidability of an extension of Monadic Second Order Logic with tree isomorphism tests and of unification with membership constraints. These results significantly improve the results of [10].


Context Variable Global Constraint Ground Term Tree Automaton Tree Language 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aiken, A., Kozen, D., Wimmers, E.L.: Decidability of systems of set constraints with negative constraints. Information and Computation 122(1), 30–44 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Anantharaman, S., Narendran, P., Rusinowitch, M.: Closure properties and decision problems of dag automata. Inf. Process. Lett. 94(5), 231–240 (2005)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bogaert, B., Tison, S.: Equality and disequality constraints on direct subterms in tree automata. In: Finkel, A., Jantzen, M. (eds.) STACS 1992. LNCS, vol. 577, pp. 161–171. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Charatonik, W.: Automata on dag representations of finite trees. Technical report (1999)Google Scholar
  5. 5.
    Charatonik, W., Pacholski, L.: Set constraints with projections are in NEXPTIME. In: IEEE Symposium on Foundations of Computer Science (1994)Google Scholar
  6. 6.
    Comon, H., Cortier, V.: Tree automata with one memory, set constraints and cryptographic protocols. TCS 331(1), 143–214 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata techniques and applications (2007),
  8. 8.
    Comon, H., Delor, C.: Equational formulae with membership constraints. Information and Computation 112(2), 167–216 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dauchet, M., Caron, A.-C., Coquidé, J.-L.: Reduction properties and automata with constraints. JSC 20, 215–233 (1995)zbMATHGoogle Scholar
  10. 10.
    Filiot, E., Talbot, J.-M., Tison, S.: Satisfiability of a spatial logic with tree variables. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 130–145. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Gilleron, R., Tison, S., Tommasi, M.: Some new decidability results on positive and negative set constraints. In: Proceedings of the International Conference on Constraints in Computational Logics, pp. 336–351 (1994)Google Scholar
  12. 12.
    Jacquemard, F., Rusinowitch, M., Vigneron, L.: Tree automata with equality constraints modulo equational theories. Research Report, LSV, ENS Cachan (2006)Google Scholar
  13. 13.
    Karianto, W., Löding, C.: Unranked tree automata with sibling equalities and disequalities. Research Report, RWTH Aachen (2006)Google Scholar
  14. 14.
    Kirchner, C., Kopetz, R., Moreau, P.-E.: Anti-pattern matching. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kutsia, T., Marin, M.: Solving regular constraints for hedges and contexts. In: UNIF 2006, pp. 89–107 (2006)Google Scholar
  16. 16.
    Libkin, L.: Logics over unranked trees: an overview. LMCS 2006 3(2), 1–31 (2006)Google Scholar
  17. 17.
    Mongy, J.: Transformation de noyaux reconnaissables d’arbres. Forêts RATEG. PhD thesis, Université de Lille (1981)Google Scholar
  18. 18.
    Murata, M.: Hedge automata: A formal model for xml schemata. Technical report, Fuji Xerox Information Systems (1999)Google Scholar
  19. 19.
    Neven, F.: Automata, logic, and XML. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 2–26. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Schwentick, T.: Automata for XML – a survey. J. Comput. Syst. Sci. 73(3), 289–315 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Stefansson, K.: Systems of set constraints with negative constraints are nexptime-complete. In: LICS (1994)Google Scholar
  22. 22.
    Thatcher, J.W., Wright, J.B.: Generalized finite automata with an application to a decision problem of second-order logic. Mathematical System Theory 2, 57–82 (1968)CrossRefMathSciNetGoogle Scholar
  23. 23.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Emmanuel Filiot
    • 1
  • Jean-Marc Talbot
    • 2
  • Sophie Tison
    • 1
  1. 1.INRIA Lille - Nord Europe, Mostrare Project, University of Lille 1 (LIFL, UMR 8022 of CNRS) 
  2. 2.University of Provence (LIF, UMR 6166 of CNRS), Marseille 

Personalised recommendations