Advertisement

Extended Multi Bottom-Up Tree Transducers

  • Joost Engelfriet
  • Eric Lilin
  • Andreas Maletti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5257)

Abstract

Extended multi bottom-up tree transducers are defined and investigated. They are an extension of multi bottom-up tree transducers by arbitrary, not just shallow, left-hand sides of rules; this includes rules that do not consume input. It is shown that such transducers can compute any transformation that is computed by a linear extended top-down tree transducer. Moreover, the classical composition results for bottom-up tree transducers are generalized to extended multi bottom-up tree transducers. Finally, a characterization in terms of extended top-down tree transducers is presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Knight, K.: Criteria for reasonable syntax-based translation models. Personal communication (2007)Google Scholar
  2. 2.
    Knight, K., Graehl, J.: An overview of probabilistic tree transducers for natural language processing. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 1–24. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    DeNeefe, S., Knight, K., Wang, W., Marcu, D.: What can syntax-based MT learn from phrase-based MT? In: EMNLP & CoNLL, pp. 755–763 (2007)Google Scholar
  4. 4.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison Wesley, Reading (1979)zbMATHGoogle Scholar
  5. 5.
    Graehl, J., Knight, K.: Training tree transducers. In: HLT-NAACL, pp. 105–112 (2004)Google Scholar
  6. 6.
    Arnold, A., Dauchet, M.: Transductions inversibles de forêts. Thèse 3ème cycle M. Dauchet, Université de Lille (1975)Google Scholar
  7. 7.
    Arnold, A., Dauchet, M.: Bi-transductions de forêts. In: ICALP, pp. 74–86. Edinburgh University Press (1976)Google Scholar
  8. 8.
    Rounds, W.C.: Mappings and grammars on trees. Math. Systems Theory 4(3), 257–287 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Thatcher, J.W.: Generalized2 sequential machine maps. J. Comput. System Sci. 4(4), 339–367 (1970)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Steinby, M., Tîrnăucă, C.I.: Syntax-directed translations and quasi-alphabetic tree bimorphisms. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 265–276. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Aho, A.V., Ullman, J.D.: Syntax directed translations and the pushdown assembler. J. Comput. System Sci. 3(1), 37–56 (1969)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Shabes, Y.: Mathematical and Computational Aspects of Lexicalized Grammars. PhD thesis, University of Pennsylvania (1990)Google Scholar
  13. 13.
    Shieber, S.M., Shabes, Y.: Synchronous tree-adjoining grammars. In: COLING, pp. 1–6 (1990)Google Scholar
  14. 14.
    Shieber, S.M.: Unifying synchronous tree adjoining grammars and tree transducers via bimorphisms. In: EACL. The Association for Computer Linguistics, pp. 377–384 (2006)Google Scholar
  15. 15.
    Arnold, A., Dauchet, M.: Morphismes et bimorphismes d’arbres. Theoret. Comput. Sci. 20, 33–93 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fülöp, Z., Kühnemann, A., Vogler, H.: A bottom-up characterization of deterministic top-down tree transducers with regular look-ahead. Inf. Process. Lett. 91(2), 57–67 (2004)CrossRefGoogle Scholar
  17. 17.
    Fülöp, Z., Kühnemann, A., Vogler, H.: Linear deterministic multi bottom-up tree transducers. Theoret. Comput. Sci. 347(1–2), 276–287 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Maletti, A.: Compositions of extended top-down tree transducers. Inform. and Comput. (to appear, 2008)Google Scholar
  19. 19.
    Engelfriet, J.: Bottom-up and top-down tree transformations: A comparison. Math. Systems Theory 9(3), 198–231 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Baker, B.S.: Composition of top-down and bottom-up tree transductions. Inform. and Control 41(2), 186–213 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Thatcher, J.W.: Tree automata: An informal survey. In: Currents in the Theory of Computing, pp. 143–172. Prentice Hall, Englewood Cliffs (1973)Google Scholar
  22. 22.
    Ganzinger, H.: Increasing modularity and language-independency in automatically generated compilers. Sci. Comput. Prog. 3(3), 223–278 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Giegerich, R.: Composition and evaluation of attribute coupled grammars. Acta Inform. 25(4), 355–423 (1988)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Kühnemann, A.: Berechnungsstärken von Teilklassen primitiv-rekursiver Programmschemata. PhD thesis, Technische Universität Dresden (1997)Google Scholar
  25. 25.
    Kühnemann, A.: Benefits of tree transducers for optimizing functional programs. In: Arvind, V., Ramanujam, R. (eds.) FST TCS 1998. LNCS, vol. 1530, pp. 146–157. Springer, Heidelberg (1998)Google Scholar
  26. 26.
    Engelfriet, J., Maneth, S.: Macro tree transducers, attribute grammars, and MSO definable tree translations. Inform. and Comput. 154(1), 34–91 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Engelfriet, J.: Top-down tree transducers with regular look-ahead. Math. Systems Theory 10(1), 289–303 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)Google Scholar
  29. 29.
    Gécseg, F., Steinby, M.: Tree languages. In: Handbook of Formal Languages, vol. 3, pp. 1–68. Springer, Heidelberg (1997)Google Scholar
  30. 30.
    Lilin, E.: Une généralisation des transducteurs d’états finis d’arbres: les S-transducteurs. Thèse 3ème cycle, Université de Lille (1978)Google Scholar
  31. 31.
    Lilin, E.: Propriétés de clôture d’une extension de transducteurs d’arbres déterministes. In: Astesiano, E., Böhm, C. (eds.) CAAP 1981. LNCS, vol. 112, pp. 280–289. Springer, Heidelberg (1981)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joost Engelfriet
    • 1
  • Eric Lilin
    • 2
  • Andreas Maletti
    • 3
  1. 1.Leiden Institute of Advanced Computer ScienceLeiden UniversityLeidenThe Netherlands
  2. 2.Université des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  3. 3.International Computer Science InstituteBerkeleyUSA

Personalised recommendations