Advertisement

Abstract

A Conway semiring is a semiring S equipped with a unary operation *:SS, called star, satisfying the sum star and product star equations. An iteration semiring is a Conway semiring satisfying Conway’s group equations. In this extended abstract, we review the role of iteration semirings in the axiomatization of regular languages and rational power series, and in the axiomatization of the equational theory of continuous and complete semirings.

Keywords

Equational Theory Regular Language Functional Matrice Ideal Term Star Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arhangelsky, K.B., Gorshkov, P.V.: Implicational axioms for the algebra of regular languages (in Russian). Doklady Akad. Nauk, USSR, ser A. 10, 67–69 (1987)Google Scholar
  2. 2.
    Béal, M.-P., Lombardy, S., Sakarovitch, J.: On the equivalence of ℤ-automata. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 397–409. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Béal, M.-P., Lombardy, S., Sakarovitch, J.: Conjugacy and equivalence of weighted automata and functional transducers. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 58–69. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Berstel, J., Reutenauer, C.: Rational Series and Their Languages. Springer, Heidelberg (1988), October 19, 2007, http://www-igm.univ-mlv.fr/berstel/ zbMATHGoogle Scholar
  5. 5.
    Bloom, S.L., Ésik, Z.: Equational axioms for regular sets. Mathematical Structures in Computer Science 3, 1–24 (1993)zbMATHGoogle Scholar
  6. 6.
    Bloom, S.L., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Processes. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  7. 7.
    Bloom, S.L., Ésik, Z.: Two axiomatizations of a star semiring quasi-variety. EATCS Bulletin 59, 150–152 (1996)zbMATHGoogle Scholar
  8. 8.
    Bloom, S.L., Ésik, Z.: Axiomatizing rational power series (to appear)Google Scholar
  9. 9.
    Bloom, S.L., Ésik, Z., Kuich, W.: Partial Conway and iteration theories, Fundamenta Informaticae (to appear)Google Scholar
  10. 10.
    Boffa, M.: A remark on complete systems of rational identities (French). RAIRO Inform. Theor. Appl. 24, 419–423 (1990)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Boffa, M.: A condition implying all rational identities (French). RAIRO Inform. Theor. Appl. 29, 515–518 (1995)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Bouyer, P., Petit, A.: A Kleene/Büchi-like theorem for clock languages. J. Automata, Languages and Combinatorics 7, 167–181 (2001)MathSciNetGoogle Scholar
  13. 13.
    Conway, J.C.: Regular Algebra and Finite Machines. Chapman and Hall, Boca Raton (1971)zbMATHGoogle Scholar
  14. 14.
    Corradini, F., De Nicola, R., Labella, A.: An equational axiomatization of bisimulation over regular expressions. J. Logic Comput. 12, 301–320 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Droste, M., Quaas, K.: A Kleene-Schützenberger theorem for weighted timed automata. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 127–141. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Eilenberg, S.: Automata, Languages, and Machines, vol. A. Academic Press, London (1974)zbMATHGoogle Scholar
  17. 17.
    Elgot, C.C.: Monadic computation and iterative algebraic theories. In: Logic Colloquium 1973, Studies in Logic, vol. 80, pp. 175–230. North Holland, Amsterdam (1975)Google Scholar
  18. 18.
    Elgot, C., Bloom, S.L., Tindell, R.: On the algebraic structure of rooted trees. J. Comput. System Sci. 16, 362–399 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Ésik, Z.: Group axioms for iteration. Information and Computation 148, 131–180 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Ésik, Z., Kuich, W.: A generalization of Kozen’s axiomatization of the equational theory of the regular sets. In: Words, Semigroups, and Transductions, pp. 99–114. World Scientific, Singapore (2001)Google Scholar
  21. 21.
    Ésik, Z., Kuich, W.: Rationally additive semirings. J. UCS 8, 173–183 (2002)MathSciNetGoogle Scholar
  22. 22.
    Ésik, Z., Kuich, W.: Inductive *-semirings. Theoret. Comput. Sci. 324, 3–33 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Goguen, J., Thatcher, J., Wagner, E., Wright, J.: Initial algebra semantics and continuous algebras. J. ACM (24), 68–95 (1977)Google Scholar
  24. 24.
    Golan, J.S.: Semirings and their Applications. Kluwer Academic Publishers, Dordrecht (1999)zbMATHGoogle Scholar
  25. 25.
    Grätzer, G.: Universal Algebra. Springer, Heidelberg (1979)zbMATHGoogle Scholar
  26. 26.
    Guessarian, I.: Algebraic Semantics. LNCS, vol. 99. Springer, Heidelberg (1981)zbMATHGoogle Scholar
  27. 27.
    Hebisch, U.: A Kleene theorem in countably complete semirings. Bayreuth. Math. Schr. 31, 55–66 (1990)zbMATHMathSciNetGoogle Scholar
  28. 28.
    Ito, T., Ando, S.: A complete axiom system of super-regular expressions. In: Information processing 74 (Proc. IFIP Congress, Stockholm, 1974), pp. 661–665. North-Holland, Amsterdam (1974)Google Scholar
  29. 29.
    Karner, G.: On limits in complete semirings. Semigroup Forum 45, 148–165 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events, Technical report, Cornell University, Department of Computer Science (1990)Google Scholar
  31. 31.
    Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular events. Inform. and Comput. 110, 366–390 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Krob, D.: Complete semirings and monoids (French). Semigroup Forum 3, 323–329 (1987)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Krob, D.: Continuous semirings and monoids (French). Semigroup Forum 37, 59–78 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Krob, D.: Complete systems of B-rational identities. Theoretical Computer Science 89, 207–343 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Krob, D.: Matrix versions of aperiodic K-rational identities. Theoretical Informatics and Applications 25, 423–444 (1991)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Milner, R.: A complete inference system for a class of regular behaviours. J. Comput. System Sci. 28, 439–466 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Milner, R.: A complete axiomatisation for observational congruence of finite-state behaviours. Inform. and Comput. 81, 227–247 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Morisaki, M., Sakai, K.: A complete axiom system for rational sets with multiplicity. Theoretical Computer Science 11, 79–92 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Rabinovitch, A.: A complete axiomatisation for trace congruence of finite state behaviors. In: Mathematical Foundations of Programming Semantics 1993. LNCS, vol. 802, pp. 530–543. Springer, Heidelberg (1994)Google Scholar
  40. 40.
    Redko, V.N.: On the determining totality of relations of an algebra of regular events (in Russian). Ukrainian Math. Ž. 16, 120–126 (1964)MathSciNetGoogle Scholar
  41. 41.
    Redko, V.N.: On algebra of commutative events (in Russian). Ukrainian Math. Ž. 16, 185–195 (1964)MathSciNetGoogle Scholar
  42. 42.
    Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal of the Association for Computing Machinery 13, 158–169 (1966)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Zoltán Ésik
    • 1
  1. 1.Research Group on Mathematical LinguisticsRovira i Virgili UniversityTarragonaSpain

Personalised recommendations