MTL with Bounded Variability: Decidability and Complexity

  • Carlo A. Furia
  • Matteo Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5215)


This paper investigates the properties of Metric Temporal Logic (MTL) over models in which time is dense but phenomena are constrained to have bounded variability. Contrary to the case of generic dense-time behaviors, MTL is proved to be fully decidable over models with bounded variability, if the variability bound is given. In these decidable cases, MTL complexity is shown to match that of simpler decidable logics such as MITL. On the contrary, MTL is undecidable if all behaviors with variability bounded by some generic constant are considered, but with an undecidability degree that is lower than in the case of generic behaviors.


Temporal Logic Linear Temporal Logic Atomic Proposition Duration Calculus Interval Temporal Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM 43(1), 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Information and Computation 104(1), 35–77 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the ACM 49(2), 172–206 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proceedings of LICS 2007 (2007)Google Scholar
  5. 5.
    D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. Formal Methods Letters 9(1), 1–4 (2007)Google Scholar
  6. 6.
    M. Fränzle. Decidability of duration calculi on restricted model classes. Technical Report Kiel MF 21/1, Christian-Albrechts Universität Kiel (1996)Google Scholar
  7. 7.
    Furia, C.A., Pradella, M., Rossi, M.: Automated verification of dense-time MTL specifications via discrete-time approximation. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008. LNCS, vol. 5014, pp. 132–147. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Furia, C.A., Rossi, M.: Integrating discrete- and continuous-time metric temporal logics through sampling. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 215–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Furia, C.A., Rossi, M.: MTL with bounded variability: Decidability and complexity. Technical report, DEI, Politecnico di Milano (May 2008)Google Scholar
  10. 10.
    Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic, vol. 1. Oxford University Press, Oxford (1994)Google Scholar
  11. 11.
    Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: Decidability and complexity. Fundamenta Informaticae 62(1), 1–28 (2004)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Lutz, C., Walther, D., Wolter, F.: Quantitative temporal logics over the reals: PSPACE and below. Information and Computation 205(1), 99–123 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science 3(1) (2007)Google Scholar
  15. 15.
    Rabinovich, A.: Temporal logics with incommensurable distances are undecidable. Information and Computation 205(5), 707–715 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Rabinovich, A.M.: Complexity of metric temporal logic with counting. In: Proceedings of FORMATS 2008. LNCS. Springer, Heidelberg (2008)Google Scholar
  17. 17.
    Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlo A. Furia
    • 1
  • Matteo Rossi
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItaly

Personalised recommendations