Concavely-Priced Timed Automata

(Extended Abstract)
  • Marcin Jurdziński
  • Ashutosh Trivedi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5215)

Abstract

Concavely-priced timed automata, a generalization of linearly-priced timed automata, are introduced. Computing the minimum value of a number of cost functions—including reachability price, discounted price, average time, average price, price-per-time average, and price-per-reward average—is considered in a uniform fashion for concavely-priced timed automata. All the corresponding decision problems are shown to be PSPACE-complete. This paper generalises the recent work of Bouyer et al. on deciding the minimum reachability price and the minimum ratio-price for linearly-priced timed automata.

A new type of a region graph—the boundary region graph—is defined, which generalizes the corner-point abstraction of Bouyer et al. A broad class of cost functions—concave-regular cost functions—is introduced, and the boundary region graph is shown to be a correct abstraction for deciding the minimum value of concave-regular cost functions for concavely-priced timed automata.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdeddaïm, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 478–492. Springer, Heidelberg (2001)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Information and Computation 104(1), 2–34 (1993)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Courcoubetis, C., Henzinger, T.A.: Computing accumulated delays in real-time systems. Formal Methods in System Design 11(2), 137–155 (1997)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Dill, D.: A theory of timed automata. In: Theoretical Computer Science, vol. 126, pp. 183–235 (1994)Google Scholar
  5. 5.
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. Theoretical Computer Science 318(3), 297–322 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Asarin, E., Maler, O.: As soon as possible: Time optimal control for timed automata. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 19–30. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.W.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific (2003)Google Scholar
  9. 9.
    Bouyer, P.: Weighted timed automata: Model-checking and games. Electr. Notes Theor. Comput. Sci. 158, 3–17 (2006)CrossRefGoogle Scholar
  10. 10.
    Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.: On the optimal reachability problem on weighted timed automata. Formal Methods in System Design 31(2), 135–175 (2007)MATHCrossRefGoogle Scholar
  11. 11.
    Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced timed automata. Formal Methods in System Design 32(1), 3–23 (2008)MATHCrossRefGoogle Scholar
  12. 12.
    Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  13. 13.
    Brihaye, T., Henzinger, T.A., Prabhu, V.S., Raskin, J.: Minimum-time reachability in timed games. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 825–837. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. In: FMSD 1992, vol. 1, pp. 385–415. Kluwer, Dordrecht (1992)Google Scholar
  15. 15.
    Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 838–849. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Decidable integration graphs. Information and Computation 150(2), 209–243 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Larsen, K.G., Behrmann, G., Brinksma, E., Fehnker, A., Hune, T., Pettersson, P., Romijn, J.: As cheap as possible: Efficient cost-optimal reachability for priced timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 493–505. Springer, Heidelberg (2001)Google Scholar
  18. 18.
    Mangasarian, O.L.: Nonlinear Programming. McGraw-Hill Series in Systems Science. McGraw-Hill, New York (1969)MATHGoogle Scholar
  19. 19.
    Niebert, P., Tripakis, S., Yovine, S.: Minimum-time reachability for timed automata. In: MED 2000. IEEE Comp. Soc. Press, Los Alamitos (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marcin Jurdziński
    • 1
  • Ashutosh Trivedi
    • 1
  1. 1.Department of Computer ScienceUniversity of WarwickUK

Personalised recommendations