Relevant Timed Schedules / Clock Valuations for Constructing Time Petri Net Reachability Graphs

  • Hanifa Boucheneb
  • Kamel Barkaoui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5215)


We consider here time Petri nets (the TPN model) and two of its state space abstractions: the state class graph (SCG) and the zone based graph (ZBG). We show that only some time points of the clock/firing domains of abstract states are relevant to construct a TPN reachability graph. Moreover, for the state class graph method, the graph computed using relevant time points is smaller than the SCG.


State Class State Zone Constraint Graph Reachability Graph Negative Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behrmann, G., Bouyer, P., Larsen, K.G., Pelànek, R.: Lower and upper bounds in zone-based abstractions of timed automata. International Journal on Software Tools for Technology Transfer 8(3), 204–215 (2006)CrossRefGoogle Scholar
  2. 2.
    Bengtsson, J.: Clocks, DBMs and States in Timed Systems, PhD thesis, Dept. of Information Technology, Uppsala University (2002)Google Scholar
  3. 3.
    Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of time Petri nets. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 442–457. Springer, Heidelberg (2003)Google Scholar
  4. 4.
    Boucheneb, H., Rakkay, H.: A more efficient time Petri net state space abstraction preserving linear properties. In: Proc. of the seventh International Conference on Application of Concurrency to System Design (ASCD 2007), pp. 61–70. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  5. 5.
    Boucheneb, H., Hadjidj, R.: CTL* model checking for time Petri nets. Journal of Theoretical Computer Science TCS 353(1-3), 208–227 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gardey, G., Roux, O.H., Roux, O.F.: State space computation and analysis of time Petri nets. Theory and Practice of Logic Programming (TPLP), Special Issue on Specification Analysis and Verification of Reactive Systems 6(3), 301–320 (2006)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets, Technical Report IRCCyN number RI 2006-14 (2006)Google Scholar
  8. 8.
    Penczek, W., Pólrola, A.: Specification and Model Checking of Temporal Properties in Time Petri Nets and Timed Automata. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 37–76. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Popova-Zeugmann, L., Schlatter, D.: Analyzing paths in time Petri nets. Fundamenta Innformaticae 37, 311–327 (1999)zbMATHMathSciNetGoogle Scholar
  10. 10.
    Yoneda, T., Schlingloff, B.H.: Efficient Verification of Parallel Real-Time Systems. Formal Methods in System Design 11(2), 187–215 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hanifa Boucheneb
    • 1
  • Kamel Barkaoui
    • 2
  1. 1.Laboratoire VeriForm, Department of Computer EngineeringÉcole Polytechnique de MontréalMontréal, QuébecCanada
  2. 2.Laboratoire CEDRICConservatoire National des Arts et MétiersParis Cedex 03France

Personalised recommendations