Timed Parity Games: Complexity and Robustness

  • Krishnendu Chatterjee
  • Thomas A. Henzinger
  • Vinayak S. Prabhu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5215)


We consider two-player games played in real time on game structures with clocks and parity objectives. The games are concurrent in that at each turn, both players independently propose a time delay and an action, and the action with the shorter delay is chosen. To prevent a player from winning by blocking time, we restrict each player to strategies that ensure that the player cannot be responsible for causing a zeno run. First, we present an efficient reduction of these games to turn-based (i.e., nonconcurrent) finite-state (i.e., untimed) parity games. The states of the resulting game are pairs of clock regions of the original game. Our reduction improves the best known complexity for solving timed parity games. Moreover, the rich class of algorithms for classical parity games can now be applied to timed parity games.

Second, we consider two restricted classes of strategies for the player that represents the controller in a real-time synthesis problem, namely, limit-robust and bounded-robust strategies. Using a limit-robust strategy, the controller cannot choose an exact real-valued time delay but must allow for some nonzero jitter in each of its actions. If there is a given lower bound on the jitter, then the strategy is bounded-robust. We show that exact strategies are more powerful than limit-robust strategies, which are more powerful than bounded-robust strategies for any bound. For both kinds of robust strategies, we present efficient reductions to standard timed automaton games. These reductions provide algorithms for the synthesis of robust real-time controllers.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, M., Thiagarajan, P.S.: Lazy rectangular hybrid automata. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 1–15. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: Modularity for timed and hybrid systems. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 74–88. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Alur, R., Torre, S.L., Madhusudan, P.: Perturbed timed automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Bouyer, P., Markey, N., Reynier, P.A.: Robust analysis of timed automata via channel machines. In: Amadio, R. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 157–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 66–80. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Timed parity games: Complexity and robustness, CoRR abs/0805.4167 (2008)Google Scholar
  8. 8.
    Chatterjee, K., Henzinger, T.A., Prabhu, V.S.: Trading infinite memory for uniform randomness in timed games. In: HSCC 2008. LNCS. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed games. In: Amadio, R., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003)Google Scholar
  10. 10.
    D’Souza, D., Madhusudan, P.: Timed control synthesis for external specifications. In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 571–582. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Faella, M., La Torre, S., Murano, A.: Automata-theoretic decision of timed games. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 94–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Faella, M., La Torre, S., Murano, A.: Dense real-time games. In: LICS 2002, pp. 167–176. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  13. 13.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  14. 14.
    Henzinger, T.A., Prabhu, V.S.: Timed alternating-time temporal logic. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 1–17. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A., Raskin, J.-F.: Robust undecidability of timed and hybrid systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 145–159. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Jurdzinski, M.: Small progress measures for solving parity games. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 290–301. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems (an extended abstract). In: STACS 1995, pp. 229–242. Springer, Heidelberg (1995)Google Scholar
  18. 18.
    Schewe, S.: Solving parity games in big steps. In: Proc. FST TCS. Springer, Heidelberg (2007)Google Scholar
  19. 19.
    Segala, R., Gawlick, R., Søgaard-Andersen, J.F., Lynch, N.A.: Liveness in timed and untimed systems. Inf. Comput. 141(2), 119–171 (1998)MATHCrossRefGoogle Scholar
  20. 20.
    Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages, ch. 7. Beyond Words, vol. 3, pp. 389–455. Springer, Heidelberg (1997)Google Scholar
  21. 21.
    Vöge, J., Jurdziński, M.: A discrete strategy improvement algorithm for solving parity games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  22. 22.
    Wong-Toi, H., Hoffmann, G.: The control of dense real-time discrete event systems. In: Proc. of 30th Conf. Decision and Control, pp. 1527–1528 (1991)Google Scholar
  23. 23.
    Wulf, M.D., Doyen, L., Markey, N., Raskin, J.F.: Robustness and implementability of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Wulf, M.D., Doyen, L., Raskin, J.F.: Almost asap semantics: from timed models to timed implementations. Formal Asp. Comput. 17(3), 319–341 (2005)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Krishnendu Chatterjee
    • 1
  • Thomas A. Henzinger
    • 2
    • 3
  • Vinayak S. Prabhu
    • 2
  1. 1. CCE UC Santa Cruz 
  2. 2. EECS UC Berkeley 
  3. 3. CCS, EPFL 

Personalised recommendations