A Hybrid Approach to Distributed Constraint Satisfaction

  • David Lee
  • Inés Arana
  • Hatem Ahriz
  • Kit-Ying Hui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5253)


We present a hybrid approach to Distributed Constraint Satisfaction which combines incomplete, fast, penalty-based local search with complete, slower systematic search. Thus, we propose the hybrid algorithm PenDHyb where the distributed local search algorithm DisPeL is run for a very small amount of time in order to learn about the difficult areas of the problem from the penalty counts imposed during its problem-solving. This knowledge is then used to guide the systematic search algorithm SynCBJ. Extensive empirical results in several problem classes indicate that PenDHyb is effective for large problems.


Constraint Satisfaction Distributed AI Hybrid Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming. Elsevier, Amsterdam (2006)CrossRefGoogle Scholar
  2. 2.
    Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraint Satisfaction: A Review. Autonomous Agents and Multi-Agent Systems 3(2), 185–207 (2000)CrossRefGoogle Scholar
  3. 3.
    Zivan, R., Meisels, A.: Synchronous vs asynchronous search on DisCSPs. In: Proceedings of the First European Workshop on Multi-Agent Systems (EUMA), Oxford (December 2003)Google Scholar
  4. 4.
    Prosser, P.: Hybrid Algorithms for the Constraint Satisfaction Problem. Computational Intelligence 9(3), 268–299 (1993)CrossRefGoogle Scholar
  5. 5.
    Ginsberg, M.L.: Dynamic backtracking. Journal of Artificial Intelligence Research 1, 25–46 (1993)zbMATHGoogle Scholar
  6. 6.
    Basharu, M., Arana, I., Ahriz, H.: Stoch-DisPeL: Exploiting randomisation in DisPeL. In: Proceedings of 7th International Workshop on Distributed Constraint Reasoning, Hakodate, Japan (May 2006)Google Scholar
  7. 7.
    Eisenberg, C.: Distributed Constraint Satisfaction for Coordinating and Integrating a Large-Scale Heterogeneous Enterprise. PhD thesis, Ecole Polytechnique Federale De Lausanne (2003)Google Scholar
  8. 8.
    Petcu, A., Faltings, B.: A hybrid of inference and local search for distributed combinatorial optimization. In: Proceedings of 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp. 342–348. IEEE Computer Society, Los Alamitos (2007)CrossRefGoogle Scholar
  9. 9.
    Petcu, A., Faltings, B.: A scalable method for multiagent constraint optimization. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), Edinburgh, Scotland (August 2005)Google Scholar
  10. 10.
    Meisels, A., Kaplansky, E., Razgon, I., Zivan, R.: Comparing performance of distributed constraints processing algorithms. In: Proceedings of the AAMAS-2002 Workshop on Distributed Constraint Reasoning, Bologna, July 2002, pp. 86–93 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • David Lee
    • 1
  • Inés Arana
    • 1
  • Hatem Ahriz
    • 1
  • Kit-Ying Hui
    • 1
  1. 1.School of ComputingThe Robert Gordon UniversityAberdeenUnited Kingdom

Personalised recommendations