Modeling Reuse on Case-Based Reasoning with Application to Breast Cancer Diagnosis

  • Carles Pous
  • Pablo Gay
  • Albert Pla
  • Joan Brunet
  • Judit Sanz
  • Teresa Ramon y Cajal
  • Beatriz López
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5253)


In the recent years, there has been an increasing interest on the use of case-based reasoning (CBR) in Medicine. CBR is characterized by four phases: retrieve, reuse, revise and retain. The first and last phases have received a lot of attention by the researchers, while the reuse phase is still in its infancy. The reuse phase involves a multi-facet problem which includes dealing with the closeness to the decision threshold used to determine similar cases, among other issues. In this paper, we propose a new reuse method whose decision variable is based on the similarity ratio. We have applied the method and tested in a breast cancer diagnosis database.


Breast Cancer Diagnosis Adaptation Method Retrieval Phase Modeling Reuse Memory Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agnar, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications 7(1), 39–59 (1994)Google Scholar
  2. 2.
    Armengol, E., Palaudáries, A., Plaza, E.: Gindividual prognosis of diabetes long-term risks: a cbr approach. Methods on Information in Medicine 40(1), 46–51 (2001)Google Scholar
  3. 3.
    Bichindaritz, I., Marling, C.: Case-based reasoning in the health sciences:what’s next? Artificial Intelligence in Medicine (36), 127–135 (2006)Google Scholar
  4. 4.
    Bichindaritz, I., Montani, S., Portinale, L.: Special issue on case-based reasoning in the health sciences. Appl. Intelligence (28), 207–209 (2008)Google Scholar
  5. 5.
    Bilska-Wolak, A.O., Floyd Jr., C.E.: Development and evaluation of a case-based reasoning classifier for prediction of breast biopsy outcome with bi-radstm lexicon. Medical Physics 29(9), 2090–2100 (2002)CrossRefGoogle Scholar
  6. 6.
    Dippon, J., Fritz, P., Kohler, M.: A statistical approach to case based reasoning, with application to breast cancer data. Computational Statistics and Data Analysis 40, 579–602 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Fawcett, T.: Roc graphs: Notes and practical considerations for data mining researchers. Technical Report HPL-2003-4, HP Labs (2003)Google Scholar
  8. 8.
    Gomes, P., Pereira, F.C., Carreiro, P., Paiva, P., Seco, N., Ferreira, J.L., Bento, C.: Case-based adaptation for uml diagram reuse. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3215, pp. 678–686. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Heindl, B., Schmidt, R., Schmid, R.G., Haller, M., Pfaller, P., Gierl, L., Pollwein, B.: A case-based consiliarius for therapy recommendation (icons): computer-based advice for calculated antibiotic therapy in intensive care medicine. Computer Methods and Programs in Biomedicine 52(2), 117–127 (1997)CrossRefGoogle Scholar
  10. 10.
    Holt, A., Bichindaritz, I., Schmidt, R., Perner, P.: Medical applications in case-basd reasoning. The Knowledge Engineering Review 20(3), 289–292 (2005)CrossRefGoogle Scholar
  11. 11.
    Hsu, C.-C., Ho, C.-S.: A new hybrid case-based architecture for medical diagnosis. Information Sciences 166, 231–247 (2004)CrossRefGoogle Scholar
  12. 12.
    Lieber, J., d’ Aquin, M., Badra, F., Napoli, A.: Modeling adaptation of breast cancer treatment decision protocols in the KASIMIR project. Applied Artificial Intelligence (28), 261–274 (2008)Google Scholar
  13. 13.
    Macleod, J.E.S., Luk, A., Titterington, D.M.: A re-examination of the distance-weighted k-nearest neighbor classification rule. IEEE Transactions on Systems, Man and Cybernetics 17(4), 689–696 (1987)CrossRefGoogle Scholar
  14. 14.
    Sollenborn, M., Nilsson, M.: Advancements and trends in medical case-based reasoning: An overview of systems and system development. In: American Association for Artificial Intelligence, Proceedings of the 17th International FlAIRS Conference, Special Track on Case-Based Reasoning, pp. 178–183 (2004)Google Scholar
  15. 15.
    Perner, P.: Concepts for novelty detection and handling based on a case-based reasoning process scheme. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 21–33. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Salem, A.-B.M.: Case-based reasoning technology for medical diagnosis. In: Proc. World Academy of Science, Engineering and Technology, vol. 25, pp. 9–13 (2007)Google Scholar
  17. 17.
    Montani, S., Bellazzi, R., Portinale, L., Gierl, L., Schmidt, R.: Casebased reasoning for medical knowledge-based systems. International Journal of Medical Informatics 64, 355–367 (2001)CrossRefGoogle Scholar
  18. 18.
    Shie, J.-D., Chen, S.-M.: Feature subset selection based on fuzzy entropy measures for handling classification problems. Applied Artificial Intelligence (28), 69–82 (2008)Google Scholar
  19. 19.
    Wolberg, W., Street, N., Mangasariam, O.: UCI machine learning repository. breast cancer wisconsin (diagnostic) data set (2007)Google Scholar
  20. 20.
    Zhang, S., Qin, Z., Ling, C.X., Sheng, S.: ”missing is useful”: Missing values in cost-sensitive decision trees. IEEE Transactions on Knowledge and Data Engineering, 17(12), 1689–1693 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carles Pous
    • 1
  • Pablo Gay
    • 1
  • Albert Pla
    • 1
  • Joan Brunet
    • 2
  • Judit Sanz
    • 3
    • 4
  • Teresa Ramon y Cajal
    • 3
  • Beatriz López
    • 1
  1. 1.Universitat de GironaGirona 
  2. 2.Institut Català d’OncologiaGirona
  3. 3.Hospital de la Santa Creu i Sant Pau 
  4. 4.Hospital Universitari Sant Joan de Reus 

Personalised recommendations