Instantiation for Parameterised Boolean Equation Systems

  • A. van Dam
  • B. Ploeger
  • T. A. C. Willemse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5160)


Verification problems for finite- and infinite-state processes, like model checking and equivalence checking, can effectively be encoded in Parameterised Boolean Equation Systems (PBESs). Solving the PBES solves the encoded problem. The decidability of solving a PBES depends on the data sorts that occur in the PBES. We describe a manipulation for transforming a given PBES to a simpler PBES that may admit solution methods that are not applicable to the original one. Depending on whether the data sorts occurring in the PBES are finite or countable, the resulting PBES can be a Boolean Equation System (BES) or an Infinite Boolean Equation System (IBES). Computing the solution to a BES is decidable. Computing the global solution to an IBES is still undecidable, but for partial solutions (which suffices for e.g. local model checking), effective tooling is possible. We give examples that illustrate the efficacy of our techniques.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bekič, H.: Programming Languages and their Definition. LNCS, vol. 177. Springer, Heidelberg (1984)zbMATHGoogle Scholar
  2. 2.
    Bradfield, J.C.: Verifying Temporal Proporties of Systems. Birkhäuser (1992)Google Scholar
  3. 3.
    Chen, T., Ploeger, B., van de Pol, J., Willemse, T.A.C.: Equivalence checking for infinite systems using parameterized boolean equation systems. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 120–135. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    van Dam, A., Ploeger, B., Willemse, T.A.C.: Instantiation for parameterised boolean equation systems. CS-Report 08-11, TU Eindhoven (2008)Google Scholar
  5. 5.
    Gallardo, M.M., Joubert, C., Merino, P.: Implementing influence analysis using parameterised boolean equation systems. In: Proc. of ISOLA 2006. IEEE, Los Alamitos (2006)Google Scholar
  6. 6.
    Groote, J.F., Mateescu, R.: Verification of temporal properties of processes in a setting with data. In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 74–90. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Groote, J.F., Willemse, T.A.C.: Model-checking processes with data. Sci. Comput. Program 56(3), 251–273 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Groote, J.F., Willemse, T.A.C.: Parameterised boolean equation systems. Theor. Comput. Sci. 343(3), 332–369 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Mader, A.: Verification of Modal Properties Using Boolean Equation Systems. PhD thesis, Technische Universität München (1997)Google Scholar
  10. 10.
    Mader, A.: Verification of modal properties using infinite boolean equation systems. Technical Report CSI-R9727, University of Nijmegen, Nijmegen (1997)Google Scholar
  11. 11.
    Mateescu, R.: Local model-checking of an alternation-free value-based modal mu-calculus. In: Proc. 2nd Int’l Workshop on VMCAI (September 1998)Google Scholar
  12. 12.
    Mateescu, R., Thivolle, D.: A model checking language for concurrent value-passing systems. In: Cuellar, J., Maibaum, T.S.E. (eds.) FM 2008. LNCS, vol. 5014. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Tan, L., Cleaveland, R.: Evidence-based model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 455–470. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific J. Mathematics 5(2), 285–309 (1955)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. van Dam
    • 1
  • B. Ploeger
    • 1
  • T. A. C. Willemse
    • 1
  1. 1.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations