Advertisement

Recasting Constraint Automata into Büchi Automata

  • Mohammad Izadi
  • Marcello M. Bonsangue
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5160)

Abstract

Constraint automata have been proposed as the operational semantics of Reo, a glue-code language for the exogenous composition and orchestration of components in a software system. In this paper we recast the theory of constraint automata into that of Büchi automata on infinite strings of records. We use records to express simultaneity constraints of I/O operations and show that every constraint automaton can be expressed as a Büchi automaton on an appropriate alphabet of records. Further, we give examples of component compositions that are expressible as Büchi automata but not as constraint automata. Finally, we show that the join composition operator for constraint automata and its counterpart for Büchi automata of records can be expressed as two basic operations on Büchi automata: alphabet extension and product.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F.: Reo: A Channel-based Coordination Model for Component Composition. Math. Struc. in Computer Science 14(3), 329–366 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arbab, F., Baier, C., de Boer, F., Rutten, J., Sirjani, M.: Synthesis of Reo circuites for implementation of component-connector automata specifications. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, pp. 236–251. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Arbab, F., Chothia, T., Meng, S., Moon, Y.-J.: Component Connectors with QoS Guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Arbab, F., Rutten, J.J.M.M.: A Coinductive Calculus of Component Connectors. In: Wirsing, M., Pattinson, D., Hennicker, R. (eds.) WADT 2003. LNCS, vol. 2755, pp. 35–56. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed component connectors. In: Proc. of the IEEE International Conference SEFM, pp. 198–207. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  6. 6.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modelling Component Connectors in Reo by Constraint Automata. Science of Computer Programming 61, 75–113 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Baier, C., Wolf, V.: Stochastic reasoning about channel-based component connectors. In: Ciancarini, P., Wiklicky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  10. 10.
    Hayes, J.P.: Computer Architecture and Organization, 2nd edn. McGraw Hill Publishing Company, New York (1998)Google Scholar
  11. 11.
    Holzmann, G.J.: The Model Checker SPIN. IEEE Transactions on software engineering 23(5), 279–295 (1997)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley, Reading (2006)Google Scholar
  13. 13.
    Kupferman, O., Vardi, M.: Verification of Fair Transition Systems. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Remy, D.: Efficient representation of extensible records. In: Proc. ACM SIGPLAN Workshop on ML and its applications, pp. 12–16 (1994)Google Scholar
  15. 15.
    Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-Oriented Programming, 2nd edn. Addison-Wesley, Reading (2002)Google Scholar
  16. 16.
    Thomas, W.: Automata on Infinite Objects. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 133–191. Elsevier, Amsterdam (1990)Google Scholar
  17. 17.
    Vardi, M.: An Automata-Theoretic Approach to Linear Temporal Logic. In: Moller, F., Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 238–266. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Mohammad Izadi
    • 1
    • 3
    • 4
  • Marcello M. Bonsangue
    • 1
    • 2
  1. 1.LIACS - Leiden UniversityThe Netherlands
  2. 2.Centrum voor Wiskunde en Informatica (CWI)The Netherlands
  3. 3.Dept. of Computer EngineeringSharif University of TechnologyTehranIran
  4. 4.Research Institute for Humanities and Cultural Studies TehranIran

Personalised recommendations