Content-Based Image Retrieval Using Combined 2D Attribute Pattern Spectra

  • Florence Tushabe
  • Michael. H. F. Wilkinson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5152)


This work proposes a region-based shape signature that uses a combination of three different types of pattern spectra. The proposed method is inspired by the connected shape filter proposed by Urbach et al. We extract pattern spectra from the red, green and blue color bands of an image then incorporate machine learning techniques for application in photographic image retrieval. Our experiments show that the combined pattern spectrum gives an improvement of approximately 30% in terms of mean average precision and precision at 20 with respect to Urbach et al’s method.


Gray Level Image Retrieval Query Image Learning Vector Quantization Peak Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bober, M.: MPEG-7 Visual Descriptors. IEEE Transactions in Circuits and Systems for Video Technology 11(7), 703–715 (2001)Google Scholar
  2. 2.
    Matheron, G.: Random sets and integral Geometry. John Wiley and Sons, Chichester (1975)zbMATHGoogle Scholar
  3. 3.
    Maragos, P.: Pattern Spectrum and Multiscale shape Representation. IEEE Transactions Pattern Analy. Mach. Intel. 11(7), 701–715 (1989)zbMATHCrossRefGoogle Scholar
  4. 4.
    Wilkinson, M.H.F.: Generalized Pattern Spectra sensitive to Spatial Information. In: Proceeding of the 16th International Conference on Pattern Recognition, Quebec City, vol. 1, pp. 701–715 (2002)Google Scholar
  5. 5.
    Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory IT-8, 179–187 (1962)Google Scholar
  6. 6.
    Urbach., E.R., Roerdink., J.B.T.M., Wilkinson, M.H.F.: Connected Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-Scale Images. Trans. Pattern Analy. Machine Intell. 29(2), 272–285 (2007)CrossRefGoogle Scholar
  7. 7.
    Bagdanov., A., Worring, M.: Granulometric analysis of document images. In: Proceeding of the 16th International Conference on Pattern Recognition, vol. 1, pp. 468–471 (2002)Google Scholar
  8. 8.
    Fuertes Garcia., J.M., Lucena Lopez, M., Gomez, J.I., de la Blanca, N.P., Fdez-Valdivia, J.: Content Based Image Retrieval Using a 2D Shape Characterization. In: Fifth Iberoamerican Symposium On Pattern Recognition (SIARP), Lisbon, pp. 529–544 (2000)Google Scholar
  9. 9.
    Grubinger., M., Clough., P., Clement, L.: The IAPR TC-12 Benchmark for Visual Information Search. IAPR Newsletter 28(2), 10–12 (2006)Google Scholar
  10. 10.
    Urbach, E.R., Wilkinson, M.H.F.: Shape-Only Granulometries and Grey-scale shape filters. In: International Symposium on Mathematical Morphology, Sydney, Australia (2002)Google Scholar
  11. 11.
    Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Computer Vision Image Understanding 64(3), 377–389 (1996)CrossRefGoogle Scholar
  12. 12.
    Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Transactions In Image Processing 7(4), 555–570 (1998)CrossRefGoogle Scholar
  13. 13.
    Meijster, A., Wilkinson, M.H.F.: A comparison of Algorithms for Connected Set openings and Closings. IEEE Trans. Pattern Analy. Mach. Intell. 34(4), 484–494 (2002)CrossRefGoogle Scholar
  14. 14.
    Nardi, A., Peters, C.: Working Notes of the 2007 CLEF Workshop, Budapest (2007)Google Scholar
  15. 15.
    Tushabe, F., Wilkinson, M.H.F.: Content-based Image Retrieval Using Shape-Size Pattern Spectra. In: Working notes for the CLEF 2007 Workshop, Hungary (2007)Google Scholar
  16. 16.
    Demsar, J., Zupan, B., Leban, G.: Orange: From Experimental Machine Learning to Interactive Data Mining. Faculty of Computer and Information Science, University of Ljubljana (2004)Google Scholar
  17. 17.
    Kira, K., Rendell, L.: A practical approach to feature selection. In: Proceedings of the 9th International Conference on Machine Learning, Aberdeen, pp. 249–256 (1992)Google Scholar
  18. 18.
    Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15, 1059–1068 (2002)CrossRefGoogle Scholar
  19. 19.
    Hammer, B., Strickert, M., Villmann, T.: On the generalization capability of GRLVQ networks. Neural Processing Letters 21, 109–120 (2005)CrossRefGoogle Scholar
  20. 20.
    Maragos, P., Evangelopoulos, G.: Levelling cartoons, texture energy markers and image decomposition. In: Proceeding of the 8th International Symposium on Mathematical Morphology, Rio de Janeiro, pp. 125–138 (2007)Google Scholar
  21. 21.
    Sofou, A., Evangelopoulos, G., Maragos, P.: Coupled Geometric and Texture PDE - based Segmentation. In: Proceeding of the International Conference on Image Processing, vol. II, pp. 650–653 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Florence Tushabe
    • 1
  • Michael. H. F. Wilkinson
    • 1
  1. 1.Institute of Mathematics and Computing ScienceUniversity of GroningenGroningenThe Netherlands

Personalised recommendations