Advertisement

A Region-Based Algorithm for Discovering Petri Nets from Event Logs

  • Josep Carmona
  • Jordi Cortadella
  • Michael Kishinevsky
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5240)

Abstract

The paper presents a new method for the synthesis of Petri nets from event logs in the area of Process Mining. The method derives a bounded Petri net that over-approximates the behavior of an event log. The most important property is that it produces a net with the smallest behavior that still contains the behavior of the event log. The methods described in this paper have been implemented in a tool and tested on a set of examples.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Process mining, www.processmining.org
  2. 2.
    Arnold, A.: Finite Transition Systems. Prentice-Hall, Englewood Cliffs (1994)Google Scholar
  3. 3.
    Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the synthesis of bounded nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–383. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  4. 4.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Proc. 5th Int. Conf. on Business Process Management, September 2007, pp. 375–383 (2007)Google Scholar
  5. 5.
    Carmona, J., Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A symbolic algorithm for the synthesis of bounded Petri nets. In: 29th International Conference on Application and Theory of Petri Nets and Other Models of Concurrency (June 2008)Google Scholar
  6. 6.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from finite transition systems. IEEE Transactions on Computers 47(8), 859–882 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part I, II. Acta Informatica 27, 315–368 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Engelfriet, J.: Determinacy - (observation equivalence = trace equivalence). Theor. Comput. Sci. 36, 21–25 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kishinevsky, M., Kondratyev, A., Taubin, A., Varshavsky, V.: Concurrent Hardware: The Theory and Practice of Self-Timed Design. John Wiley and Sons, London (1993)zbMATHGoogle Scholar
  11. 11.
    Nielsen, M., Rozenberg, G., Thiagarajan, P.: Elementary transition systems. Theoretical Computer Science 96, 3–33 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Bonn, Institut für Instrumentelle Mathematik (technical report Schriften des IIM Nr. 3) (1962)Google Scholar
  13. 13.
    van der Aalst, W., Rubin, V., Verbeek, H., van Dongen, B., Kindler, E., Günther, C.: Process mining: A two-step approach to balance between underfitting and overfitting. Technical Report BPM-08-01, BPM Center (2008)Google Scholar
  14. 14.
    van der Aalst, W.M.P., Günther, C.W.: Finding structure in unstructured processes: The case for process mining. In: Basten, T., Juhás, G., Shukla, S.K. (eds.) ACSD, pp. 3–12. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  15. 15.
    van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros, A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W.E., Weijters, A.J.M.M.: ProM 4.0: Comprehensive support for eal process analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)CrossRefGoogle Scholar
  17. 17.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  18. 18.
    van Dongen, B., Busi, N., Pinna, G., van der Aalst, W.: An iterative algorithm for applying the theory of regions in process mining. Technical Report Beta rapport 195, Department of Technology Management, Eindhoven University of Technology (2007)Google Scholar
  19. 19.
    Verbeek, H., Pretorius, A., van der Aalst, W.M.P., van Wijk, J.J.: On Petri-net synthesis and attribute-based visualization. In: Proc. Workshop on Petri Nets and Software Engineering (PNSE 2007), June 2007, pp. 127–141 (2007)Google Scholar
  20. 20.
    Weijters, A., van der Aalst, W., de Medeiros, A.A.: Process mining with the heuristics miner-algorithm. Technical Report WP 166, BETA Working Paper Series, Eindhoven University of Technology (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Josep Carmona
    • 1
  • Jordi Cortadella
    • 1
  • Michael Kishinevsky
    • 2
  1. 1.Universitat Politècnica de CatalunyaSpain
  2. 2.Intel CorporationUSA

Personalised recommendations