Workflow Simulation for Operational Decision Support Using Design, Historic and State Information

  • Anne Rozinat
  • Moe Wynn
  • Wil van der Aalst
  • Arthur ter Hofstede
  • Colin Fidge
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5240)


Simulation is widely used as a tool for analyzing business processes but is mostly focused on examining rather abstract steady-state situations. Such analyses are helpful for the initial design of a business process but are less suitable for operational decision making and continuous improvement. Here we describe a simulation system for operational decision support in the context of workflow management. To do this we exploit not only the workflow’s design, but also logged data describing the system’s observed historic behavior, and information extracted about the current state of the workflow. Making use of actual data capturing the current state and historic information allows our simulations to accurately predict potential near-future behaviors for different scenarios. The approach is supported by a practical toolset which combines and extends the workflow management system YAWL and the process mining framework ProM.


Workflow Management Process Mining Short-term Simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., Alves de Medeiros, A.K., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters, A.J.M.M.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: Yet Another Workflow Language. Information Systems 30(4), 245–275 (2005)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., Reijers, H.A., Weijters, A.J.M.M., van Dongen, B.F., Alves de Medeiros, A.K., Song, M., Verbeek, H.M.W.: Business Process Mining: An Industrial Application. Information Systems 32(5), 713–732 (2007)CrossRefGoogle Scholar
  4. 4.
    Ardhaldjian, R., Fahner, M.: Using simulation in the business process reengineering effort. Industrial engineering, pp. 60–61 (July 1994)Google Scholar
  5. 5.
    Buzacott, J.A.: Commonalities in Reengineered Business Processes: Models and Issues. Management Science 42(5), 768–782 (1996)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Systems: Bridging People and Software through Process Technology. Wiley & Sons, Chichester (2005)CrossRefGoogle Scholar
  7. 7.
    Hall, C., Harmon, P.: A Detailed Analysis of Enterprise Architecture, Process Modeling, and Simulation Tools. Technical report 2.0, BPTrends (September 2006)Google Scholar
  8. 8.
    Jansen-Vullers, M., Netjes, M.: Business process simulation – a tool survey. In: Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, Aarhus, Denmark (October 2006)Google Scholar
  9. 9.
    Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent Systems. International Journal on Software Tools for Technology Transfer 9(3-4), 213–254 (2007)CrossRefGoogle Scholar
  10. 10.
    Kelton, D.W., Sadowski, R., Sturrock, D.: Simulation with Arena. McGraw-Hill, New York (2003)Google Scholar
  11. 11.
    Kleijnen, J., van Groenendaal, W.: Simulation: a statistical perspective. John Wiley and Sons, New York (1992)zbMATHGoogle Scholar
  12. 12.
    Laugna, M., Marklund, J.: Business Process Modeling, Simulation, and Design. Prentice Hall, Upper Saddle River, New Jersey (2005)Google Scholar
  13. 13.
    Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice-Hall PTR, Upper Saddle River (1999)zbMATHGoogle Scholar
  14. 14.
    Reijers, H.: Design and Control of Workflow Processes. LNCS, vol. 2617. Springer, Berlin (2003)zbMATHGoogle Scholar
  15. 15.
    Reijers, H.A., van der Aalst, W.M.P.: Short-Term Simulation: Bridging the Gap between Operational Control and Strategic Decision Making. In: Hamza, M.H. (ed.) Proceedings of the IASTED International Conference on Modelling and Simulation, pp. 417–421. IASTED/Acta Press, Anaheim (1999)Google Scholar
  16. 16.
    Ross, S.M.: A course in simulation. Macmillan, New York (1990)zbMATHGoogle Scholar
  17. 17.
    Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering Colored Petri Nets From Event Logs. International Journal on Software Tools for Technology Transfer 10(1), 57–74 (2008)CrossRefGoogle Scholar
  18. 18.
    Rozinat, A., Wynn, M., van der Aalst, W.M.P., ter Hofstede, A.H.M., Fidge, C.: Workflow Simulation for Operational Decision Support using YAWL and ProM. BPM Center Report BPM-08-04, (2008)Google Scholar
  19. 19.
    Weske, M.: Business Process Management: Concepts, Languages, Architectures. Springer, Heidelberg (2007)Google Scholar
  20. 20.
    Wynn, M.T., Dumas, M., Fidge, C.J., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Business Process Simulation for Operational Decision Support. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp. 66–77. Springer, Heidelberg (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Anne Rozinat
    • 1
  • Moe Wynn
    • 2
  • Wil van der Aalst
    • 1
    • 2
  • Arthur ter Hofstede
    • 2
  • Colin Fidge
    • 2
  1. 1.Information Systems GroupEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Business Process Management GroupQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations