Advertisement

3-Dehydroquinate synthase

Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume S7)

Keywords

Dynamic Light Scattering Neurospora Crassa Shikimic Acid Aspergillus Nidulans Epigallocatechin Gallate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Saijo, R.; Takeo, T.: Some properties of the initial four enzymes involved in shikimic acid biosynthesis in tea plant. Agric. Biol. Chem., 43, 1427–1432 (1979)Google Scholar
  2. [2]
    Bode, R.; Birnbaum, D.: Aggregation und Trennbarkeit der Enzyme des Shikimat-Pathway bei Hefen. Z. Allg. Mikrobiol., 21, 417–422 (1981)CrossRefPubMedGoogle Scholar
  3. [3]
    Mousdale, D.M.; Coggins, J.R.: Subcellular localization of the common shikimate-pathway enzymes in Pisum sativum L.. Planta, 163, 241–249 (1985)CrossRefGoogle Scholar
  4. [4]
    Euverink, G.J.W.; Hessels, G.I.; Vrijbloed, J.W.; Coggins, J.R.; Dijkhuizen, L.: Purification and characterization of a dual function 3-dehydroquinate dehydratase from Amycolatopsis methanolica. J. Gen. Microbiol., 138, 2449–2457 (1992)PubMedGoogle Scholar
  5. [5]
    Myrvold, S.; Reimer, L.M.; Pompliano, D.L.; Frost, J. W.: Chemical inhibition of dehydroquinate synthase. J. Am. Chem. Soc., 111, 1861–1866 (1989)CrossRefGoogle Scholar
  6. [6]
    Pompliano, D.L.; Reimer, L.M.; Myrvold, S.; Frost, J. W.: Probing lethal metabolic perturbations in plants with chemical inhibition of dehydroquinate synthase. J. Am. Chem. Soc., 111, 1866–1871 (1989)CrossRefGoogle Scholar
  7. [7]
    Matsui, K.; Miwa, K.; Sano, K.: Cloning of a gene cluster of aroB, aroE and aroL for aromatic amino acid biosynthesis in Brevibacterium lactofermentum, a glutamic acid-producing bacterium. Agric. Biol. Chem., 52, 525–531 (1988)Google Scholar
  8. [8]
    Bereswill, S; Fassbinder, F.; Voelzing, C.; Haas, R.; Reuter, K.; Ficner, R.; Kist, M.: Cloning and functional characterization of the genes encoding 3-dehydroquinate synthase (aroB) and tRNA-guanine transglycosylase (tgt) from Helicobacter pylori. Med. Microbiol. Immunol., 186, 125–134 (1997)CrossRefPubMedGoogle Scholar
  9. [9]
    Mehdi, S.; Frost, J.W.; Knowles, J.R.: Dehydroquinate synthase from Escherichia coli, and its substrate 3-deoxy-D-arabino-heptulosonic acid 7-phosphate. Methods Enzymol., 142, 306–314 (1987)CrossRefPubMedGoogle Scholar
  10. [10]
    Coggins, J.R.; Duncan, K.; Anton, I.A.; Boocock, M.R.; Chaudhuri, S.; Lambert, J.M.; Lewendon, A.; Millar, G.; Mousdale, D.M.; Smith, D.D.S.: The anatomy of a multifunctional enzyme. Biochem. Soc. Trans., 15, 754–759 (1987)PubMedGoogle Scholar
  11. [11]
    Van den Hombergh, J.P.T.W.; Moore, J.D.; Charles, I.G.: Overproduction in Escherichia coli of the dehydroquinate synthase domain of the Aspergillus nidulans pentafunctional AROM protein. Biochem. J., 284, 861–867 (1992)PubMedGoogle Scholar
  12. [12]
    Millar, G.; Coggins, J.R.: The complete amino acid sequence of 3-dehydroquinate synthase of Escherichia coli K12. FEBS Lett., 200, 11–17 (1986)CrossRefPubMedGoogle Scholar
  13. [13]
    Lambert, J.M.; Boocock, M.R.; Coggins, J.R.: The 3-dehydroquinate synthase activity of the pentafunctional arom enzyme complex of Neurospora crassa is Zn2+-dependent. Biochem. J., 226, 817–829 (1985)PubMedGoogle Scholar
  14. [14]
    Frost, J.W.; Bender, J.L.; Kadonaga, J.T.; Knowles, J.R.: Dehydroquinate synthase from Escherichia coli: Purification, cloning and construction of overproducers of the enzyme. Biochemistry, 23, 4470–4475 (1984)CrossRefPubMedGoogle Scholar
  15. [15]
    Duncan, K.; Coggins, J.R.: Subcloning of the Escherichia coli genes aro A (5-enolyruvylshikimate 3-phosphate synthase) and aro B (3-dehydroquinate synthase). Biochem. Soc. Trans., 12, 274–275 (1984)Google Scholar
  16. [16]
    Yamamoto, E.: Purification and metal requirement of 3-dehydroquinate synthase from Phaseolus mungo seedlings. Phytochemistry, 19, 779–781 (1980)CrossRefGoogle Scholar
  17. [17]
    LeMarechal, P.; Froussios, C.; Level, M.; Azerad, R.: The interaction of phosphonate and homophosphonate analogues of 3-deoxy-D-arabino heptulosonate 7-phosphate with 3-dehydroquinate synthetase from Escherichia coli. Biochem. Biophys. Res. Commun., 92, 1104–1109 (1980)CrossRefGoogle Scholar
  18. [18]
    Maitra, U.S.; Sprinson, D.B.: 5-Dehydro-3-deoxy-D-arabino-heptulosonic acid 7-phosphate. J. Biol. Chem., 253, 55426–5430 (1978)Google Scholar
  19. [19]
    Hasan, N.; Nester, E.W.: Dehydroquinate synthase in Bacillus subtilis. An enzyme associated with chorismate synthase and flavin reductase. J. Biol. Chem., 253, 4999–5004 (1978)PubMedGoogle Scholar
  20. [20]
    Saijo, R.; Kosuge, T.: The conversion of 3-deoxyarabinoheptulosonate 7-phosphate to 3-dehydroquinate by Sorghum seedling preparations. Phytochemistry, 17, 223–225 (1978)CrossRefGoogle Scholar
  21. [21]
    Lumsden, J.; Coggins, J.R.: The subunit structure of the arom multienzyme complex of Neurospora crassa. A possible pentafunctional polypeptide chain. Biochem. J., 161, 599–607 (1977)PubMedGoogle Scholar
  22. [22]
    Gaertner, F.H.: Purification of two multienzyme complexes in the aromatictryptophan pathway of Neurospora crassa. Arch. Biochem. Biophys., 151, 277–284 (1972)CrossRefPubMedGoogle Scholar
  23. [23]
    Srinivasan, P.R.; Rothschild, J.; Sprinson, D.B.: The enzymic conversion of 3-deoxy-D-arabino-heptulosonic acid 7-phosphate to 5-dehydroquinate. J. Biol. Chem., 238, 3176–3182 (1963)PubMedGoogle Scholar
  24. [24]
    Moore, J.D.; Coggins, J.R.; Virden, R.; Hawkins, A.R.: Efficient independent activity of a monomeric, monofunctional dehydroquinate synthase derived from the N-terminus of the pentafunctional AROM protein of Aspergillus nidulans. Biochem. J., 301, 297–304 (1994)PubMedGoogle Scholar
  25. [25]
    Carpenter, E.P.; Hawkins, A.R.; Frost, J.W.; Browns, K.A.: Structure of dehydroquinate synthase reveals an active site capable of multistep catalysis. Nature, 394, 299–302 (1998)CrossRefPubMedGoogle Scholar
  26. [26]
    Frost, J.W.; Piehler, L.T.; Montchamp, J.L.: In vitro and in vivo inhibition of dehydroquinate synthase. Biosynthesis and molecular regulation of amino acids in plants (Singh, B.K.; Flores, H.E.; Shannon, J.C eds.), 163–173 (1992)Google Scholar
  27. [27]
    Nichols, C.E.; Ren, J.; Lamb, H.; Haldane, F.; Hawkins, A.R.; Stammers, D.K.: Identification of many crystal forms of Aspergillus nidulans dehydroquinate synthase. Acta Crystallogr. Sect. D, 57, 306–309 (2001)CrossRefGoogle Scholar
  28. [28]
    Nichols, C.E.; Hawkins, A.R.; Stammers, D.K.: Structure of the ‘open’ form of Aspergillus nidulans 3-dehydroquinate synthase at 1.7 A resolution from crystals grown following enzyme turnover. Acta Crystallogr. Sect. D, 60, 971–973 (2004)CrossRefGoogle Scholar
  29. [29]
    Nichols, C.E.; Ren, J.; Leslie, K.; Dhaliwal, B.; Lockyer, M.; Charles, I.; Hawkins, A.R.; Stammers, D.K.: Comparison of ligand-induced conformational changes and domain closure mechanisms, between prokaryotic and eukaryotic dehydroquinate synthases. J. Mol. Biol., 343, 533–546 (2004)CrossRefPubMedGoogle Scholar
  30. [30]
    Park, A.; Lamb, H.K.; Nichols, C.; Moore, J.D.; Brown, K.A.; Cooper, A.; Charles, I.G.; Stammers, D.K.; Hawkins, A.R.: Biophysical and kinetic analysis of wild-type and site-directed mutants of the isolated and native dehydroquinate synthase domain of the AROM protein. Protein Sci., 13, 2108–2119 (2004)CrossRefPubMedGoogle Scholar
  31. [31]
    Sugahara, M.; Nodake, Y.; Sugahara, M.; Kunishima, N.: Crystal structure of dehydroquinate synthase from Thermus thermophilus HB8 showing functional importance of the dimeric state. Proteins, 58, 249–252 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Personalised recommendations