Advertisement

Threonine synthase

Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume S7)

Keywords

Propionic Acid Neurospora Crassa Pyridoxal Phosphate Free Amino Acid Level Threonine Dehydratase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Flavin, M.; Slaughter, C.: Purification and properties of threonine synthetase of Neurospora. J. Biol. Chem., 235, 1103–1108 (1960)PubMedGoogle Scholar
  2. [2]
    Skarstedt, M.T.; Greer, S.B.: Threonine synthetase of Bacillus subtilis. The nature of an associated dehydratase activity. J. Biol. Chem., 248, 1032–1044 (1973)PubMedGoogle Scholar
  3. [3]
    Schildkraut, I.; Greer, S.: Threonine synthetase-catalyzed conversion of phosphohomoserine to α-ketobutyrate in Bacillus subtilis. J. Bacteriol., 115, 777–785 (1973)PubMedGoogle Scholar
  4. [4]
    Madison, J.T.; Thompson, J.F.: Threonine synthetase from higher plants: stimulation by S-adenosylmethionine and inhibition by cysteine. Biochem. Biophys. Res. Commun., 71, 684–691 (1976)CrossRefPubMedGoogle Scholar
  5. [5]
    Thoen, A.; Rognes, S.E.; Aarnes, H.: Biosynthesis of threonine from homoserine in pea seedlings. II. Threonine synthase. Plant Sci. Lett., 13, 113–119 (1978)CrossRefGoogle Scholar
  6. [6]
    Parsot, C.; Cossart, P.; Saint-Girons, I.; Cohen, G.N.: Nucleotide sequence of thrC and of the transcription termination region of the threonine operon in Escherichia coli K12. Nucleic Acids Res., 11, 7331–7345 (1983)CrossRefPubMedGoogle Scholar
  7. [7]
    Giovanelli, J.; Veluthambi, K.; Thompson, G.A.; Mudd, S.H.; Datko, A.H.: Threonine synthase of Lemna paucicostata Hegelm. 6746. Plant Physiol., 76, 285–292 (1984)CrossRefPubMedGoogle Scholar
  8. [8]
    Shames, S.L.; Ash, D.E.; Wedler, F.C.; Villafranca, J.J.: Interaction of aspartate and aspartate-derived antimetabolites with the enzymes of the threonine biosynthetic pathway of Escherichia coli. J. Biol. Chem., 259, 15331–15339 (1984)PubMedGoogle Scholar
  9. [9]
    Parsot, C.: Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and d-serine dehydratase. EMBO J., 5, 3013–3019 (1986)PubMedGoogle Scholar
  10. [10]
    Giovanelli, J.; Mudd, S.H.; Datko, A.H.; Thompson, G.A.: Effects of orthophosphate and adenosine 5′-phosphate on threonine synthase and cystathionine g-synthase of Lemna paucicostata Hegelm. 6746. Plant Physiol., 81, 577–583 (1986)CrossRefPubMedGoogle Scholar
  11. [11]
    Parsot, C.: A common origin for enzymes involved in the terminal step of the threonine and tryptophan biosynthetic pathways. Proc. Natl. Acad. Sci. USA, 84, 5207–5210 (1987)CrossRefPubMedGoogle Scholar
  12. [12]
    Curien, G.; Dumas, R.; Ravanel, S.; Douce, R.: Characterization of an Arabidopsis thaliana cDNA encoding an S-adenosylmethionine-sensitive threonine synthase. Threonine synthase from higher plants. FEBS Lett., 390, 85–90 (1996)CrossRefPubMedGoogle Scholar
  13. [13]
    Malumbres, M.; Mateos, L.M.; Lumbreras, M.A.; Guerrero, C.; Martin, J.F.: Analysis and expression of the thrC gene of Brevibacterium lactofermentum and characterization of the encoded threonine synthase. Appl. Environ. Microbiol., 60, 2209–2219 (1994)PubMedGoogle Scholar
  14. [14]
    Laber, B.; Maurer, W.; Hanke, C.; Graefe, S.; Ehlert, S.; Messerschmidt, A.; Clausen, T.: Characterization of recombinant Arabidopsis thaliana threonine synthase. Eur. J. Biochem., 263, 212–221 (1999)CrossRefPubMedGoogle Scholar
  15. [15]
    Greenberg, J.M.; Thompson, J.F.; Madison, J.T.: Homoserine kinase and threonine synthase in methionine-overproducing soybean tissue cultures. Plant Cell Rep., 7, 477–480 (1988)CrossRefGoogle Scholar
  16. [16]
    Farrington, G.K.; Kumar, A.; Shames, S.L.; Ewaskiewicz, J.I.; Ash, D.A.; Wedler, F.C.: Threonine synthase of Escherichia coli: inhibition by classical and slow-binding analogues of homoserine phosphate. Arch. Biochem. Biophys., 307, 165–174 (1993)CrossRefPubMedGoogle Scholar
  17. [17]
    Laber, B.; Gerbling, K.P.; Harde, C.; Neff, K.H.; Nordhoff, E.; Pohlenz, H.D.: Mechanisms of interaction of Escherichia coli threonine synthase with substrates and inhibitors. Biochemistry, 33, 3413–3423 (1994)CrossRefPubMedGoogle Scholar
  18. [18]
    Curien, G.; Job, D.; Douce, R.; Dumas, R.: Allosteric activation of Arabidopsis threonine synthase by S-adenosylmethionine. Biochemistry, 37, 13212–13221 (1998)CrossRefPubMedGoogle Scholar
  19. [19]
    Muhitch, M.J.: Effects of expressing E. coli threonine synthase in tobacco (Nicotiana tabacum L.) suspension culture cells on free amino acid levels, aspartate pathway enzyme activities and uptake of aspartate into the cells. Plant Physiol., 150, 16–22 (1997)Google Scholar
  20. [20]
    Thomazeau, K.; Curien, G.; Thompson, A.; Dumas, R.; Biou, V.: MAD on threonine synthase: the phasing power of oxidized selenomethionine. Acta Crystallogr. Sect. D, 57, 1337–1340 (2001)CrossRefGoogle Scholar
  21. [21]
    Curien, G.; Ravanel, S.; Dumas, R.: A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur. J. Biochem., 270, 4615–4627 (2003)CrossRefPubMedGoogle Scholar
  22. [22]
    Garrido-Franco, M.; Ehlert, S.; Messerschmidt, A.; Marinkovic, S.; Huber, R.; Laber, B.; Bourenkov, G.P.; Clausen, T.: Structure and function of threonine synthase from yeast. J. Biol. Chem., 277, 12396–12405 (2002)CrossRefPubMedGoogle Scholar
  23. [23]
    Omi, R.; Goto, M.; Miyahara, I.; Mizuguchi, H.; Hayashi, H.; Kagamiyama, H.; Hirotsu, K.: Crystal structures of threonine synthase from Thermus thermophilus HB8: conformational change, substrate recognition, and mechanism. J. Biol. Chem., 278, 46035–46045 (2003)CrossRefPubMedGoogle Scholar
  24. [24]
    Thomazeau, K.; Curien, G.; Dumas, R.; Biou, V.: Crystal structure of threonine synthase from Arabidopsis thaliana. Protein Sci., 10, 638–648 (2001)CrossRefPubMedGoogle Scholar
  25. [25]
    Lee, M.; Martin, M.N.; Hudson, A.O.; Lee, J.; Muhitch, M.J.; Leustek, T.: Methionine and threonine synthesis are limited by homoserine availability and not the activity of homoserine kinase in Arabidopsis thaliana. Plant J., 41, 685–696 (2005)CrossRefPubMedGoogle Scholar
  26. [26]
    Mas-Droux, C.; Biou, V.; Dumas, R.: Allosteric threonine synthase. Reorganization of the pyridoxal phosphate site upon asymmetric activation through S-adenosylmethionine binding to a novel site. J. Biol. Chem., 281, 5188–5196 (2006)CrossRefPubMedGoogle Scholar
  27. [27]
    Avraham, T.; Amir, R.: The expression level of threonine synthase and cystathionine-γ-synthase is influenced by the level of both threonine and methionine in Arabidopsis plants. Transgenic Res., 14, 299–311 (2005)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Personalised recommendations