Magnesium chelatase

Part of the Springer Handbook of Enzymes book series (HDBKENZYMES, volume S7)


ATPase Activity Chlorophyll Biosynthesis Rhodobacter Capsulatus Magnesium Chelatase Chlorophyll Biosynthetic Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Walker, C.J.; Weinstein, J.D.: In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: resolution of the activity into soluble and membrane-bound fractions. Proc. Natl. Acad. Sci. USA, 88, 5789–5793 (1991)CrossRefPubMedGoogle Scholar
  2. [2]
    Walker, C.J.; Willows, R.D.: Mechanism and regulation of Mg-chelatase. Biochem. J., 327, 321–333 (1997)PubMedGoogle Scholar
  3. [3]
    Fodje, M.N.; Hansson, A.; Hansson, M.; Olsen, J.G.; Gough, S.; Willows, R.D.; Al-Karadaghi, S.: Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J. Mol. Biol., 311, 111–122 (2001)CrossRefPubMedGoogle Scholar
  4. [4]
    Nakayama, M.; Masuda, T.; Sato, N.; Yamagata, H.; Bowler, C.; Ohta, H.; Shioi, Y.; Takamiya, K.: Cloning, subcellular localization and expression of CHL1, a subunit of magnesium-chelatase in soybean. Biochem. Biophys. Res. Commun., 215, 422–428 (1995)CrossRefPubMedGoogle Scholar
  5. [5]
    Gorchein, A.: Cell-free activity of magnesium chelatase in Rhodobacter spheroides and Rhodobacter capsulatus. Biochem. Soc. Trans., 25, 82S (1997)PubMedGoogle Scholar
  6. [6]
    Reid, J.D.; Hunter, C.N.: Current understanding of the function of magnesium chelatase. Biochem. Soc. Trans., 30, 643–645 (2002)CrossRefPubMedGoogle Scholar
  7. [7]
    Papenbrock, J.; Mock, H.-P.; Kruse, E.; Grimm, B.: Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta, 208, 264–273 (1999)CrossRefGoogle Scholar
  8. [8]
    Grafe, S.; Saluz, H.-P.; Grimm, B.; Hanel, F.: Mg-chelatase of tobacco: the role of the subunit CHL D in the chelation step of protoporphyrin IX. Proc. Natl. Acad. Sci. USA, 96, 1941–1946 (1999)CrossRefPubMedGoogle Scholar
  9. [9]
    Hansson, A.; Willows, R.D.; Roberts, T.H.; Hansson, M.: Three semidominant barley mutants with single amino acid substitutions in the smallest magnesium chelatase subunit form defective AAA+ hexamers. Proc. Natl. Acad. Sci. USA, 99, 13944–13949 (2002)CrossRefPubMedGoogle Scholar
  10. [10]
    Willows, R.D.; Lake, V.; Roberts, T.H.; Beale, S.I.: Inactivation of Mg chelatase during transition from anaerobic to aerobic growth in Rhodobacter capsulatus. J. Bacteriol., 185, 3249–3258 (2003)CrossRefPubMedGoogle Scholar
  11. [11]
    Yaronskaya, E.B.; Rassadina, V.V.; Averina, N.G.: Regulation of magnesium chelatase activity during excessive accumulation of porphyrins in green barley leaves. Russ. J. Plant Physiol., 49, 771–775 (2002)CrossRefGoogle Scholar
  12. [12]
    Petersen, B.L.; Jensen, P.E.; Gibson, L.C.D.; Stummann, B.M.; Hunter, C.N.; Henningsen, K.W.: Reconstitution of an active magnesium chelatase enzyme complex from the bchI,-D, and-H gene products of the green sulfur bacterium Chlorobium vibrioforme expressed in Escherichia coli. J. Bacteriol., 180, 699–704 (1998)PubMedGoogle Scholar
  13. [13]
    Karger, G.A.; Reid, J.D.; Hunter, C.N.: Characterization of the binding of deuteroporphyrin IX to the magnesium chelatase H subunit and spectroscopic properties of the complex. Biochemistry, 40, 9291–9299 (2001)CrossRefPubMedGoogle Scholar
  14. [14]
    Jensen, P.E.; Reid, J.D.; Hunter, C.N.: Modification of cysteine residues in the ChlI and ChlH subunits of magnesium chelatase results in enzyme inactivation. Biochem. J., 352, 435–441 (2000)CrossRefPubMedGoogle Scholar
  15. [15]
    Willows, R.D.; Beale, S.I.: Heterologous expression of the Rhodobacter capsulatus BchI,-D, and-H genes that encode magnesium chelatase subunits and characterization of the reconstituted enzyme. J. Biol. Chem., 273, 34206–34213 (1998)CrossRefPubMedGoogle Scholar
  16. [16]
    Fuesler, T.P.; Wright, L.A., Jr.; Castelfranco, P.A.: Properties of magnesium chelatase in greening etioplasts. Metal ion specificity and effect of substrate concentrations. Plant Physiol., 67, 246–249 (1981)CrossRefPubMedGoogle Scholar
  17. [17]
    Nakayama, M.; Masuda, T.; Bando, T.; Yamagata, H.; Ohta, H.; Takamiya, K.: Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol., 39, 275–284 (1998)PubMedGoogle Scholar
  18. [18]
    Rissler, H.M.; Collakova, E.; DellaPenna, D.; Whelan, J.; Pogson, B.J.: Chlorophyll biosynthesis. Expression of a second Chl I gene of magnesium chelatase in Arabidopsis supports only limited chlorophyll synthesis. Plant Physiol., 128, 770–779 (2002)CrossRefPubMedGoogle Scholar
  19. [19]
    Papenbrock, J.; Mock, H.-P.; Tanaka, R.; Kruse, E.; Grimm, B.: Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol., 122, 1161–1169 (2000)CrossRefPubMedGoogle Scholar
  20. [20]
    Luo, M.; Weinstein, J.D.; Walker, C.J.: Magnesium chelatase subunit D from pea: characterization of the cDNA, heterologous expression of an enzymatically active protein and immunoassay of the native protein. Plant Mol. Biol., 41, 721–731 (1999)CrossRefPubMedGoogle Scholar
  21. [21]
    Papenbrock, J.; Pfundel, E.; Mock, H.-P.; Grimm, B.: Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J., 22, 155–164 (2000)CrossRefPubMedGoogle Scholar
  22. [22]
    Papenbrock, J.; Grafe, S.; Kruse, E.; Hanel, F.; Grimm, B.: Mg-chelatase of tobacco: identification of a Chl D cDNA sequence encoding a third subunit, analysis of the interaction of the three subunits with the yeast two-hybrid system, and reconstitution of the enzyme activity by co-expression of recombinant CHL D, CHL H and CHL I. Plant J., 12, 981–990 (1997)CrossRefPubMedGoogle Scholar
  23. [23]
    Willows, R.D.; Gibson, L.C.; Kanangara, C.G.; Hunter, C.N.; von Wettstein, D.: Three separate proteins constitute the magnesium chelatase of Rhodobacter sphaeroides. Eur. J. Biochem., 235, 438–443 (1996)CrossRefPubMedGoogle Scholar
  24. [24]
    Lake, V.; Olsson, U.; Willows, R.D.; Hansson, M.: ATPase activity of magnesium chelatase subunit I is required to maintain subunit D in vivo. Eur. J. Biochem., 271, 2182–2188 (2004)CrossRefPubMedGoogle Scholar
  25. [25]
    Shepherd, M.; McLean, S.; Hunter, C.N.: Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS J., 272, 4532–4539 (2005)CrossRefPubMedGoogle Scholar
  26. [26]
    Reid, J.D.; Hunter, C.N.: Magnesium-dependent ATPase activity and cooperativity of magnesium chelatase from Synechocystis sp. PCC6803. J. Biol. Chem., 279, 26893–26899 (2004)CrossRefPubMedGoogle Scholar
  27. [27]
    Willows, R.D.; Hansson, A.; Birch, D.; Al-Karadaghi, S.; Hansson, M.: EM single particle analysis of the ATP-dependent BchI complex of magnesium chelatase: an AAA+ hexamer. J. Struct. Biol., 146, 227–233 (2004)CrossRefPubMedGoogle Scholar
  28. [28]
    Lake, V.; Willows, R.D.: Rapid extraction of RNA and analysis of transcript levels in Chlamydomonas reinhardtii using real-time RT-PCR: Magnesium chelatase chlH, chlD and chlI gene expression. Photosynth. Res., 77, 69–76 (2003)CrossRefPubMedGoogle Scholar
  29. [29]
    Olsson, U.; Sirijovski, N.; Hansson, M.: Characterization of eight barley xantha-f mutants deficient in magnesium chelatase. Plant Physiol. Biochem., 42, 557–564 (2004)CrossRefPubMedGoogle Scholar
  30. [30]
    Sirijovski, N.; Olsson, U.; Lundqvist, J.; Al-Karadaghi, S.; Willows, R.D.; Hansson, M.: ATPase activity associated with the magnesium chelatase H-subunit of the chlorophyll biosynthetic pathway is an artefact. Biochem. J., 400, 477–484 (2006)CrossRefPubMedGoogle Scholar
  31. [31]
    Jaschke, P.R.; Beatty, J.T.: The photosystem of Rhodobacter sphaeroides assembles with zinc bacteriochlorophyll in a bchD (magnesium chelatase) mutant. Biochemistry, 46, 12491–12500 (2007)CrossRefPubMedGoogle Scholar
  32. [32]
    Viney, J.; Davison, P.A.; Hunter, C.N.; Reid, J.D.: Direct measurement of metal-ion chelation in the active site of the AAA(+) ATPase magnesium chelatase. Biochemistry, 46, 12788–12794 (2007)CrossRefPubMedGoogle Scholar
  33. [33]
    Ikegami, A.; Yoshimura, N.; Motohashi, K.; Takahashi, S.; Romano, P.G.; Hisabori, T.; Takamiya, K.; Masuda, T.: The CHLI1 subunit of Arabidopsis thaliana magnesium chelatase is a target protein of the chloroplast thioredoxin. J. Biol. Chem., 282, 19282–19291 (2007)CrossRefPubMedGoogle Scholar
  34. [34]
    Sawers, R.J.; Farmer, P.R.; Moffett, P.; Brutnell, T.P.: In planta transient expression as a system for genetic and biochemical analyses of chlorophyll biosynthesis. Plant Methods, 2, 15 (2006)CrossRefPubMedGoogle Scholar
  35. [35]
    Sawers, R.J.; Viney, J.; Farmer, P.R.; Bussey, R.R.; Olsefski, G.; Anufrikova, K.; Hunter, C.N.; Brutnell, T.P.: The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase. Plant Mol. Biol., 60, 95–106 (2006)CrossRefPubMedGoogle Scholar
  36. [36]
    Hedtke, B.; Alawady, A.; Chen, S.; Boernke, F.; Grimm, B.: HEMA RNAi silencing reveals a control mechanism of ALA biosynthesis on Mg chelatase and Fe chelatase. Plant Mol. Biol., 64, 733–742 (2007)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Personalised recommendations