Optimal Preference Elicitation for Skyline Queries over Categorical Domains

  • Jongwuk Lee
  • Gae-won You
  • Seung-won Hwang
  • Joachim Selke
  • Wolf-Tilo Balke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5181)


When issuing user-specific queries, users often have a vaguely defined information need. Skyline queries identify the most “interesting” objects for users’ incomplete preferences, which provides users with intuitive query formulation mechanism. However, the applicability of this intuitive query paradigm suffers from a severe drawback. Incomplete preferences on domain values can often lead to impractical skyline result sizes. In particular, this challenge is more critical over categorical domains. This paper addresses this challenge by developing an iterative elicitation framework. While user preferences are collected at each iteration, the framework aims to both minimize user interaction and maximize skyline reduction. The framework allows to identify a reasonably small and focused skyline set, while keeping the query formulation still intuitive for users. All that is needed is answering a few well-chosen questions. We perform extensive experiments to validate the benefits of our strategy and prove that a few questions are enough to acquire a desired manageable skyline set.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balke, W.-T., Güntzer, U., Lofi, C.: Eliciting matters– controlling skyline sizes by incremental integration of user preferences. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 551–562. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Balke, W.-T., Güntzer, U., Lofi, C.: User interaction support for incremental refinement of preference-based queries. In: RCIS (2007)Google Scholar
  3. 3.
    Balke, W.-T., Güntzer, U., Siberski, W.: Exploiting indifference for customization of partial order skylines. In: IDEAS (2006)Google Scholar
  4. 4.
    Balke, W.-T., Güntzer, U., Siberski, W.: Getting prime cuts from skylines over partially ordered domains. In: BTW (2007)Google Scholar
  5. 5.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE (2001)Google Scholar
  6. 6.
    Chan, C.-Y., Jagadish, H., Tan, K., Tung, A.K., Zhang, Z.: On high dimensional skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Chan, C.-Y., Jagadish, H., Tan, K.-L., Tung, A.K., Zhang, Z.: Finding k-dominant skyline in high dimensional space. In: SIGMOD (2006)Google Scholar
  8. 8.
    Chen, L., Pu, P.: Survey of preference elicitation methods. In: EPFL Technical Report (2004)Google Scholar
  9. 9.
    Chomicki, J.: Querying with intrinsic preferences. In: Jensen, C.S., Jeffery, K.G., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Chomicki, J., Godfery, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE (2003)Google Scholar
  11. 11.
    Fishburn, P.C.: Utility Theory for Decision Making. Wiley, Chichester (1976)Google Scholar
  12. 12.
    Godfrey, P., Shipley, R., Gryz, J.: Maximal vector computation in large data sets. In: VLDB (2005)Google Scholar
  13. 13.
    Hansson, S.O.: What is ceteris paribus preference? Journal of Philosophical Logic 25(3), 307–332 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives. Preferences and Value Tradeoffs. Wiley, Chichester (1976)Google Scholar
  15. 15.
    Kendall, M.: A new measure of rank correlation. In: Biometrica (1938)Google Scholar
  16. 16.
    Kießling, W.: Foundations of preferences in database systems. In: VLDB, pp. 311–322 (2002)Google Scholar
  17. 17.
    Kießling, W., Köstler, G.: Preference SQL- design, implementation, experience. In: VLDB, pp. 311–322 (2002)Google Scholar
  18. 18.
    Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for skyline queries. In: VLDB (2002)Google Scholar
  19. 19.
    Kung, H.T., Luccio, F., Preparata, F.: On finding the maxima of a set of vectors. Journal of the Association for Computing Machinery (1975)Google Scholar
  20. 20.
    Lee, J., You, G., Hwang, S., Selke, J., Balke, W.-T.: Optimal preference elicitation for skyline queries over categorical domains. POSTECH Technoical Report (2008),
  21. 21.
    Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline operator. In: ICDE (2007)Google Scholar
  22. 22.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progessive algorithm for skyline queries. In: SIGMOD (2003)Google Scholar
  23. 23.
    Tan, K., Eng, P., Ooi, B.C.: Efficient progressive skyline computation. In: VLDB (2001)Google Scholar
  24. 24.
    von Wright, G.H.: The Logic of Preference. An Essay. Edinburgh University Press (1963)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jongwuk Lee
    • 1
  • Gae-won You
    • 1
  • Seung-won Hwang
    • 1
  • Joachim Selke
    • 2
  • Wolf-Tilo Balke
    • 2
  1. 1.Department of Computer Science and EngineeringPOSTECHKorea
  2. 2.L3S Research CenterLeibniz UniversitätHannoverGermany

Personalised recommendations