Interactive Multiobjective Optimization of Superstructure SMB Processes

  • Jussi Hakanen
  • Yoshiaki Kawajiri
  • Lorenz T. Biegler
  • Kaisa Miettinen
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 618)


We consider multiobjective optimization problems arising from superstructure formulation of Simulated Moving Bed (SMB) processes. SMBs are widely used in many industrial separations of chemical products and they are challenging from the optimization point of view. We employ efficient interactive multiobjec-tive optimization which enables considering several conflicting objectives simultaneously without unnecessary simplifications as have been done in previous studies. The interactive IND-NIMBUS software combined with the IPOPT optimizer is used to solve multiobjective SMB design problems. The promising results of solving a superstructure SMB optimization problem with four objectives demonstrate the usefulness of the approach.


Interactive methods Interior point optimization IPOPT Multiobjec-tive optimization NIMBUS Simulated moving bed processes Superstructure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hakanen J, Hakala J, Manninen J (2006) An integrated multiobjective design tool for process design. Appl Thermal Eng 26:1393–1399CrossRefGoogle Scholar
  2. 2.
    Hakanen J, Kawajiri Y, Miettinen K, Biegler LT (2007) Interactive multi-objective optimization for simulated moving bed processes. Control Cybern 36(2):282–320Google Scholar
  3. 3.
    Hashimoto K, Adachi S, Noujima H, Maruyama H (1983) Models for the separation of glucose/fructose mixture using a simulated moving bed adsorber. J Chem Eng Jpn 16(5):400–406CrossRefGoogle Scholar
  4. 4.
    Kawajiri Y, Biegler LT (2006) A nonlinear programming superstructure for optimal dynamic operations of simulated moving bed processes. Ind Eng Chem Res 45(25):8503–8513CrossRefGoogle Scholar
  5. 5.
    Kawajiri Y, Biegler LT (2006) Optimization strategies for simulated moving bed and power-feed processes. AIChE J 52(4):1343–1350CrossRefGoogle Scholar
  6. 6.
    Ko D, Moon I (2002) Multiobjective optimization of cyclic adsorption processes. Ind Eng Chem Res 41(1):93–104CrossRefGoogle Scholar
  7. 7.
    Miettinen K (1999) Nonlinear multiobjective optimization. Kluwer, BostonGoogle Scholar
  8. 8.
    Miettinen K, Mäkelä MM (2006) Synchronous Approach in Interactive Multiobjective optimization. Eur J Oper Res 170:909–922CrossRefGoogle Scholar
  9. 9.
    Subramani H, Hidajat K, Ray A (2003) Optimization of reactive SMB and VARICOL systems. Comput Chem Eng 27:1883–1901CrossRefGoogle Scholar
  10. 10.
    Toumi A, Hanisch F, Engell S (2002) Optimal operation of continuous chromatographic processes: mathematical optimization of the VARICOL process. Ind Eng Chem Res 41:4328– 4337CrossRefGoogle Scholar
  11. 11.
    Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106:25–57CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jussi Hakanen
    • 1
  • Yoshiaki Kawajiri
    • 2
  • Lorenz T. Biegler
    • 2
  • Kaisa Miettinen
    • 1
  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläFinland
  2. 2.Department of Chemical EngineeringCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations