Advertisement

Enhancement of Signal Response in Complex Networks Induced by Topology and Noise

  • Juan A. Acebréon
  • Sergi Lozano
  • Alex Arenas
Part of the Understanding Complex Systems book series (UCS)

Abstract

The effect of the topological structure of a coupled dynamical system in presence of noise on the signal response is investigated. In particular, we consider the response of a noisy overdamped bistable dynamical system driven by a periodic force, and linearly coupled through a complex network of interactions. We find that the interplay among the heterogeneity of the network and the noise plays a crucial role in the signal response of the dynamical system. This has been validated by extensive numerical simulations conducted in a variety of networks. Furthermore, we propose analytically tractable models based on simple topologies, which explain the observed behavior.

Keywords

Stochastic Resonance Star Network Simple Topology Extensive Numerical Simulation Stochastic Resonance Phenomenon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bulsara, A.R., Gammaitoni, L.: Tuning in to Noise. Phys. Today 49, 39 (1996).CrossRefGoogle Scholar
  2. 2.
    Lindner, J.F., Meadows, B.K., Ditto, W., Inchiosa, M.E., Bulsara, A.R.: Array Enhanced Stochastic Resonance and Spatiotemporal Synchronization. Phys. Rev. Lett. 75 3 (1995).CrossRefGoogle Scholar
  3. 3.
    Acebrón, J.A., Lozano, S., and Arenas, A.: Amplified signal response in scale-free networks by collaborative signaling. Phys. Rev. Lett. 99(12), 128701 (2007).CrossRefGoogle Scholar
  4. 4.
    Bollobas, B.: Random Graphs (2nd edition), Cambridge University Press, New York (2001).zbMATHGoogle Scholar
  5. 5.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–511 (1999).CrossRefMathSciNetGoogle Scholar
  6. 6.
    Tessone, C.J., Mirasso, C.R., Toral, R., Gunton, J.D.: Diversity-induced resonance. Phys. Rev. Lett. 97 194101 (2006).CrossRefGoogle Scholar
  7. 7.
    Acebrón, J.A., Bonilla, L.L., Perez Vicente, C.J., Ritort, F., Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137 (2005).CrossRefGoogle Scholar
  8. 8.
    Gómez-Gardeñes, J., Moreno, Y., Arenas, A.: Paths to Synchronization on Complex Networks. Phys. Rev. Lett. 98, 034101 (2007)CrossRefGoogle Scholar
  9. 9.
    Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F.:Stochastic resonance. Rev. Mod. Phys. 70 223 (1998).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Juan A. Acebréon
    • 1
  • Sergi Lozano
  • Alex Arenas
  1. 1.Departament d’Enginyeria Informatica i MatematiquesUniversitat Rovirai VirgiliCatalonia

Personalised recommendations