Connectivity and Competition in Airline Networks

A Study of Lufthansa's Network

Air transport networks have exhibited a trend towards complex dynamics in recent years. Using Lufthansa's networks as an example, this paper aims to illustrate the relevance of various network indicators — such as connectivity and concentration — for the empirical analysis of airline network configurations. The results highlight the actual strategic choices made by Lufthansa for its own network, as well in combination with its partners in Star Alliance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamic, L. A. (2000). Zipf, power-laws, and Pareto — A ranking tutorial. http://www.hpl.hp.com. Accessed 16 April 2007.
  2. Albert, R., & Barabási, A. -L. (2002). Statistical mechanics of complex networks. Reviewsof Modern Physics, 74, 47–97.CrossRefGoogle Scholar
  3. Alderighi, M., Cento, A., Nijkamp, P., & Rietveld, P. (2007). Assessment of new hub-and-spokeand point-to-point airline network configurations. Transportation Reviews, 27, 529–549.CrossRefGoogle Scholar
  4. Barabási, L. A., & Albert, R. (1999). Emerging of scaling in random networks. Science, 286, 509–512.CrossRefGoogle Scholar
  5. Barabasi, L. A., & Bonabeau, E. (2003). Scale-free networks. Scientific American, 288, 60–69.CrossRefGoogle Scholar
  6. Barabási, L. A., & Oltvai, Z. N. (2004). Network's biology: understanding the cell's functional organization. Nature Reviews Genetics, 5, 101–113.CrossRefGoogle Scholar
  7. Barrat, A., Barthélemy, M., Pastor-Satorras, R., & Vespignani, A. (2004).The architectureof complex weighted networks. Proceedings of the National Academy of Science ofthe United States of America, 8 March. http://www.pnas.org/cgi/doi//10.1073/pnas.0400087101.
  8. Barthélemy, M. (2003). Crossover from scale-free to spatial networks. Europhysics Letters, 63, 915–921.CrossRefGoogle Scholar
  9. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. -U. (2006). Complexnetworks: structure and dynamics. Physics Reports, 424, 175–308.CrossRefGoogle Scholar
  10. Boschma, R. A. (2005). Proximity and innovation. A critical assessment. Regional Studies, 39, 61–74.CrossRefGoogle Scholar
  11. Bootsma, P. D. (1997). Airline flight schedule development; analysis and design tools for European hinterland hubs. Utrecht: University of Twente.Google Scholar
  12. Bowen, J. (2002). Network change, deregulation, and access in the global airline industry. Economic Geography 78, 425–439.CrossRefGoogle Scholar
  13. Burghouwt, G., & de Wit, J. (2003). The temporal configuration of European airline networks. University of Montreal, Publication AJD-74.Google Scholar
  14. Burt, R. S. (1992). Structural holes. Cambdridge, MA: Harvard University Press.Google Scholar
  15. Button, K., & Stough, R. (2000). Air transport networks: Theory and policy implications. Cheltenham: Edward Elgar.Google Scholar
  16. Caves, D. W., Christensen, L. R., & Tretheway, M. W. (1984). Economics of density versus economies of scale: why trunks and local service airline costs differ. The Rand Journal of Economics 15, 471–489.CrossRefGoogle Scholar
  17. Cento, A. (2006). Challenge to the airline industry: emergence of carriers and low cost carriers. PhD Thesis, VU University Amsterdam.Google Scholar
  18. Dennis, N. P. S. (1998). Competition between hub airports in Europe and a methodology for forecasting connecting traffic. 8th World Conference on Transport Research, Antwerp.Google Scholar
  19. Erdös, P., & Rényi, A. (1959). On random graphs I. Publications Mathematiques, 6, 290–297.Google Scholar
  20. Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.CrossRefGoogle Scholar
  21. Freeman, L. C. (1979). Centrality in social networks: a conceptual clarification. Social Networks, 1, 215–239.CrossRefGoogle Scholar
  22. Frenken, K., & Nuvolari, A. (2004). The early development of the steam engine: an evolutionary interpretation using complexity theory. Industrial and Corporate Change, 13, 419–450.Google Scholar
  23. Gorman, S. P. (2005). Networks, security and complexity. Cheltenham, Edward Elgar.Google Scholar
  24. Gorman, S.P., & Kulkarni, R. (2004). Spatial small worlds. Environment and Planning B 31, 273–296.CrossRefGoogle Scholar
  25. Hinloopen, E., & Nijkamp, P. (1990). Qualitative multiple criteria choice analysis: the dominant regime method. Quality and Quantity, 24, 37–56.CrossRefGoogle Scholar
  26. Jeong, H. (2003). Complex scale-free networks. Physics A, 321, 226–237.CrossRefGoogle Scholar
  27. Lijesen, M.G. (2004). Adjusting the Herfindahl index for close substitutes: an application to pricing in civil aviation. Transportation Research E 40, 123–134.CrossRefGoogle Scholar
  28. Martin, J. C., & Voltes-Dorta, A. (2008). Theoretical evidence of exciting pitfalls in measuring hubbing practices in airline networks. Networks and Spatial Economics, 9, 161–182.CrossRefGoogle Scholar
  29. McShan, W. S. (1986). An economic analysis of hub-and-spoke routing strategy in the airline industry. PhD Thesis, Northwestern University.Google Scholar
  30. Newman, M. E. J. (2003). A measure of betweenness centrality based on random walks. arXiv:condmat/0309045 (2003)Google Scholar
  31. Nijkamp, P. (2008). Policy developments in the airline industry. In: D. De Jong, B. Kaashoek, & W. J. Zondag (eds.) Blue Skies or Storm Clouds: Essays on Public Policy and Air Transport. Scienceguide, The Hague, pp. 20–25.Google Scholar
  32. Nijkamp, P., & Reggiani, A. (1992). Interaction, evolution and chaos in space. Berlin: Springer.Google Scholar
  33. O' Kelly, E. M., & Miller, H. J. (1994) The hub network design problem: an overview and synthesis. Journal of Transport Geography, 2, 31–40.CrossRefGoogle Scholar
  34. Patuelli, R. (2007). Regional labour markets in Germany: statistical analysis of spatio-temporal disparities and network structures. PhD Thesis, VU University Amsterdam, September.Google Scholar
  35. Reggiani, A., & Nijkamp, P. (eds.). (2006). Spatial dynamics, networks and modelling. Cheltenham: Edward Elgar.Google Scholar
  36. Reggiani, A., & Vinciguerra, S. (2007). Network connectivity models: an overview and empirical applications. In: T. Friesz (ed.), Network Science, Nonlinear Science and Infrastructure Systems. New York: Springer, 147–165.CrossRefGoogle Scholar
  37. Reynolds-Feighan, A. J. (1994). EC and US air freight markets: network organisation in aderegulated environment. Transportation Reviews, 14, 193–217.CrossRefGoogle Scholar
  38. Reynolds-Feighan, A. J. (1998). The impact of US airline deregulation on airport trafficpatterns. Geographical Analysis, 30, 234–253.Google Scholar
  39. Reynolds-Feighan, A. J. (2001). Traffic distribution in low-cost and full service carriernetwork in the US air transport market. Journal of Air Transport Management, 7, 265–275.CrossRefGoogle Scholar
  40. Rietveld, P., & Brons, M. (2001). Quality of hub-and-spoke networks; the effects oftimetable coordination on waiting time and rescheduling time. Journal of Air TransportManagement, 7, 241–249.CrossRefGoogle Scholar
  41. Schintler, L. A., Gorman, S. P., Reggiani, A., Patuelli, R., & Nijkamp, P. (2005). Small-world phenomena in communication networks: a cross-Atlantic comparison. In A.Reggiani, L. A. Schintler (eds.), Methods and models in transport and telecommunications: cross Atlantic perspectives. Berlin: Springer, 201–220.CrossRefGoogle Scholar
  42. Schintler, L. A., Gorman, S. P., Reggiani, A., Patuelli, R., Gillespie, A., Nijkamp, P.,& Rutherford, J. (2005). Complex network phenomena in telecommunication systems. Networks and Spatial Economics, 5, 351–370.CrossRefGoogle Scholar
  43. Toh, R. S., & Higgins, R. G. (1985). The impact of hub-and-spoke network centralizationand route monopoly on domestic airline profitability. Transportation Journal, 24, 16–27.Google Scholar
  44. Veldhuis, J., & Kroes, E. (2002). Dynamics in relative network performance of the mainEuropean hub airports. European Transport Conference, Cambridge.Google Scholar
  45. Waters, N. (2006). Network and nodal indices. Measures of complexity and redundancy: areview. In: A. Reggiani, P. Nijkamp (eds.), Spatial dynamics, Networks and Modelling.Cheltenham: Edward Elgar, 16–33.Google Scholar
  46. Watts, D. J., & Strogatz, S. H. (1998) Collective dynamics of small world networks. Nature, 393, 440–442.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of BolognaItaly
  2. 2.Department of Spatial EconomicsVU University AmsterdamThe Netherlands
  3. 3.KLM Royal Dutch AirlinesMilanItaly

Personalised recommendations