Building an Index of Nanomedical Resources: An Automatic Approach Based on Text Mining

  • Stefano Chiesa
  • Miguel García-Remesal
  • Guillermo de la Calle
  • Diana de la Iglesia
  • Vaida Bankauskaite
  • Víctor Maojo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5178)

Abstract

Nanomedicine is an emerging discipline aimed to applying recent developments in nanotechnology to the medical domain. In recent years, there has been an exponential growth of the number of available nanomedical resources. The latter are aimed to different tasks and include databases, nanosensors, implantable materials, etc. This leads to the necessity of creating new methods to automatically organize such resources depending on their provided functionalities. In this paper we will first present a brief overview on the nanomedical discipline and its related technologies. Next we will introduce a method targeted to the automated creation of an index of nanomedical resources. This method is based on an existing approach to automatically build an index of biomedical resources from research papers using text mining techniques. We believe that such an index would be a valuable tool to foster the research on nanomedicine. This is an example of application in the new area of Nanoinformatics.

Keywords

nanomedicine text mining biomedicine nanoinformatics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Science and Technology Council.: The national Nanotechnology initiative. Strategic Plan. National Science and Technology Council (2007)Google Scholar
  2. 2.
    Faynman, R.P.: There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960)Google Scholar
  3. 3.
    Denning, P.J.: Computing is a Natural Science. Commun. ACM 50(7), 13–18 (2007)CrossRefGoogle Scholar
  4. 4.
    Jain, K.K.: The handbook of Nanomedicine. Humana Press, Totowa (2008)Google Scholar
  5. 5.
    Gordon, N., Sagman, U.: Nanomedicine Taxonomy. Canadian Institute of Health Research & Canadian NanoBusiness Alliance (2003)Google Scholar
  6. 6.
    European Technology Platform: Nanomedicine: Nanotechnology for Health. European Technology Platform, Brussels (2006)Google Scholar
  7. 7.
    Alivisatos, A.P.: Less is more in medicine. Sci. Am. 285, 66–73 (2001)CrossRefGoogle Scholar
  8. 8.
    Freitas, A.R.: Nanomedicine: Nanotechnology, Biology, and Medicine 1(1), 2–9 (2005)CrossRefGoogle Scholar
  9. 9.
    García-Remesal, M., Maojo, V., Crespo, J., Billhardt, H.: Logical Schema Acquisition from Text Based Sources for Structured and non-structured Biomedical Sources Integration. In: Proc. AMIA Symp., pp. 259–263 (2007)Google Scholar
  10. 10.
    Woods, W.: Transition Network Grammars for Natural Language Analysis. Commun. ACM 1970 13(10), 591–606 (1970)MATHCrossRefGoogle Scholar
  11. 11.
    Cannata, N., Merelli, E., Altman, R.B.: Time to Organize the Bioinformatics Resourceome. PLoS. Comput. Biol. 1(7), e76 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Stefano Chiesa
    • 1
  • Miguel García-Remesal
    • 1
  • Guillermo de la Calle
    • 1
  • Diana de la Iglesia
    • 1
  • Vaida Bankauskaite
    • 1
  • Víctor Maojo
    • 1
  1. 1.Biomedical Informatics Group, Dep. Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridSpain

Personalised recommendations