Advertisement

Scalable Content-Based Ranking in P2P Information Retrieval

  • Maroje Puh
  • Toan Luu
  • Ivana Podnar Zarko
  • Martin Rajman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5177)

Abstract

Numerous retrieval models have been defined within the field of information retrieval (IR) to produce a ranked and ordered list of documents relevant to a given query. Existing models are in general well-explored and thoroughly evaluated using traditionally centralized IR engines. However, the problem of producing global relevance scores to enable document ranking in peer-to-peer (P2P) IR systems has largely been neglected. Traditional ranking models in general require global document collection metrics such as document frequency, average document length, or the number of collection documents, which are not readily available in P2P IR systems. In this paper, we present a scalable solution for content-based ranking using global relevance scores in P2P IR systems that has been implemented as a part of ALVIS PEERS, a full-text IR engine developed for structured P2P networks. The provided experimental results show efficient and scalable performance of here proposed ranking implementation.

Keywords

P2P Information retrieval Content-based ranking 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baeza-Yates, R., Castillo, C., Junqueira, F., Plachouras, V., Silvestri, F.: Challenges in distributed information retrieval (invited paper). In: ICDE (2007)Google Scholar
  2. 2.
    Yee, W.G., Beigbeder, M., Buntine, W.: SIGIR06 workshop report: Open Source Information Retrieval systems (OSIR06). SIGIR. Forum. 40(2), 61–65 (2006)CrossRefGoogle Scholar
  3. 3.
    Aberer, K., Alima, L.O., Ghodsi, A., Girdzijauskas, S., Haridi, S., Hauswirth, M.: The Essence of P2P: A Reference Architecture for Overlay Networks. In: Fifth IEEE International Conference on Peer-to-Peer Computing, pp. 11–20 (2005)Google Scholar
  4. 4.
    Luu, T., Klemm, F., Podnar, I., Rajman, M., Aberer, K.: ALVIS Peers: A Scalable Full-text Peer-to-Peer Retrieval Engine. In: Workshop on Peer-to-Peer Information Retrieval (P2PIR 2006), ACM 15th Conference on Information and Knowledge Management Workshops, November 2006, pp. 41–48 (2006)Google Scholar
  5. 5.
    Bender, M., Michel, S., Weikum, G., Zimmer, C.: The MINERVA Project: Database Selection in the Context of P2P Search. In: BTW 2005, Karlsruhe, Germany (2005)Google Scholar
  6. 6.
    Suel, T., Mathur, C., Wu, J.-W., Zhang, J., Delis, A., Kharrazi, M.I., Long, X., Shanmugasundaram, K.: ODISSEA: A Peer-to-Peer Architecture for scalable Web Search and Information Retrieval. In: International Workshop on the Web and Databases (WebDB 2003), San Diego, California, USA (2003)Google Scholar
  7. 7.
    Podnar, I., Rajman, M., Luu, T., Klemm, F., Aberer, K.: Beyond term indexing: A P2P framework for web information retrieval. Informatica 2(30), 153–161 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Maroje Puh
    • 1
  • Toan Luu
    • 2
  • Ivana Podnar Zarko
    • 1
  • Martin Rajman
    • 2
  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia
  2. 2.Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland

Personalised recommendations