Abstract

In pattern recognition and related fields, graph based representations offer a versatile alternative to the widely used feature vectors. Therefore, an emerging trend of representing objects by graphs can be observed. This trend is intensified by the development of novel approaches in graph based machine learning, such as graph kernels or graph embedding techniques. These procedures overcome a major drawback of graphs, which consists in a serious lack of algorithms for classification and clustering. The present paper is inspired by the idea of representing graphs by means of dissimilarities and extends previous work to the more general setting of Lipschitz embeddings. In an experimental evaluation we empirically confirm that classifiers relying on the original graph distances can be outperformed by a classification system using the Lipschitz embedded graphs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. Wiley-Interscience, Chichester (2000)Google Scholar
  2. 2.
    Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in pattern recognition. Int. Journal of Pattern Recognition and Artificial Intelligence 18(3), 265–298 (2004)CrossRefGoogle Scholar
  3. 3.
    Gärtner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1), 49–58 (2003)CrossRefGoogle Scholar
  4. 4.
    Bourgain, J.: On Lipschitz embedding of finite metric spaces in Hilbert spaces. Israel Journal of Mathematics 52(1-2), 46–52 (1985)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Duin, R., Pekalska, E.: The Dissimilarity Representations for Pattern Recognition: Foundations and Applications. World Scientific, Singapore (2005)Google Scholar
  7. 7.
    Hjaltason, G., Samet, H.: Properties of embedding methods for similarity searching in metric spaces. IEEE Trans. on Pattern Analysis ans Machine Intelligence 25(5), 530–549 (2003)CrossRefGoogle Scholar
  8. 8.
    Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1, 245–253 (1983)MATHCrossRefGoogle Scholar
  9. 9.
    Riesen, K., Neuhaus, M., Bunke, H.: Bipartite graph matching for computing the edit distance of graphs. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 1–12. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic applications. Combinatorica 15, 215–245 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Kaufman, L., Rousseeuw, P.: Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Chichester (1990)Google Scholar
  12. 12.
    Nene, S., Nayar, S., Murase, H.: Columbia Object Image Library: Coil-100. Technical report, Department of Computer Science, Columbia University, New York (1996)Google Scholar
  13. 13.
    Watson, C., Wilson, C.: NIST Special Database 4, Fingerprint Database. National Institute of Standards and Technology (1992)Google Scholar
  14. 14.
    DTP, D.T.P.: AIDS antiviral screen (2004), http://dtp.nci.nih.gov/docs/aids/aids_data.html
  15. 15.
    Schenker, A., Bunke, H., Last, M., Kandel, A.: Graph-Theoretic Techniques for Web Content Mining. World Scientific, Singapore (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kaspar Riesen
    • 1
  • Horst Bunke
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations