Advertisement

Abstract

I argue that data becomes temporarily interesting by itself to some self-improving, but computationally limited, subjective observer once he learns to predict or compress the data in a better way. Curiosity is the desire to create or discover more data that allows for compression progress. This drive motivates exploring infants, pure mathematicians, composers, artists, dancers, comedians, yourself, and recent artificial systems.

References

  1. 1.
    Schmidhuber, J.: Simple Algorithmic Principles of Discovery, Subjective Beauty, Selective Attention, Curiosity & Creativity. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) Proc. 10th Intl. Conf. on Discovery Science (DS 2007). LNCS (LNAI), vol. 4755, pp. 26–38. Springer, Heidelberg (2007); Also In: Hutter, M., Servedio, R. A., Takimoto, E. (eds.) Proc. 18th Intl. Conf. on Algorithmic Learning Theory (ALT 2007). LNCS (LNAI), vol.4754, p. 32. Springer, Heidelberg (2007)Google Scholar
  2. 2.
    Schmidhuber, J.: Developmental Robotics, Optimal Artificial Curiosity, Creativity, Music, and the Fine Arts. Connection Science 18(2), 173–187 (2006)CrossRefGoogle Scholar
  3. 3.
    Schmidhuber, J.: Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science 13(4), 587–612 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Schmidhuber, J.: Exploring the Predictable. In: Ghosh, S.T. (ed.) Advances in Evolutionary Computing, pp. 579–612. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Schmidhuber, J.: Low-Complexity Art. Leonardo, Journal of the International Society for the Arts, Sciences, and Technology 30(2), 97–103 (1997)Google Scholar
  6. 6.
    Schmidhuber, J.: A possibility for implementing curiosity and boredom in model-building neural controllers. In: Meyer, J.A., Wilson, S.W. (eds.) Proc. of the International Conference on Simulation of Adaptive Behavior: From Animals to Animats, pp. 222–227. MIT Press/Bradford Books (1991)Google Scholar
  7. 7.
    Schmidhuber, J.: Curious model-building control systems. In: Proc. International Joint Conference on Neural Networks, Singapore, vol. 2, pp. 1458–1463. IEEE, Los Alamitos (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jürgen Schmidhuber
    • 1
  1. 1.IDSIA - Instituto Dalle Molle di Studi sull’Intelligenza Artificiale, Lugano, Switzerland & Cognitive Robotics LabTechnische Universität MünchenGermany

Personalised recommendations